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AMME3060 Engineering Methods
Lecture Notes

Lecturer: Dr Nicholas Williamson

Room S411in JO7 level 4

nicholas.williamson@sydney.edu.au

Introduction:

Objective:

Understand numerical solution methods which can be used to solve engineering problems in
heat transfer, fluids and solids and the implementation of these methods in commercial
packages.
Understand the mathematical basis of numerical solution methods:
o @ finite element, finite difference and finite volume methods.
o @ direct, iterative linear solvers and non-linear solvers.
o @ mesh generation and best practice in commercial packages
o @ numerical stability
By the end of this course
o @ you will be able to approach any commercial engineering software package and
have a deep understanding of how to different settings within a package will effect
computational efficiency, stability and accuracy.
o @ You will have expert level competency in the use of computational software such
as ANSYS.


mailto:nicholas.williamson@sydney.edu.au

Approach

» Understand Mathematical methods and concepts
¥ Lectures, reading of lecture notes.

¥» Tutorial practice problems and assignments

7~ Link the theory to practice: Demonstrate numerical accuracy, stability and
efficiency and understand implementation
Use a simple Android App to test concepts

v

Write simple Matlab scripts and test accuracy, speed and stability.

v

Use commercial packages to test the same problem and realise the same behavior exists in

v

commercial packages.

» Expert use of Commercial packages
# You will practice these ANSYS skill in PC |lzboratories and in Assignments.

» Understand the range of methods which can be used to solve complex
engineering problems in heat transfer, fluids and solids.

¥» Range of problems used throughout the course.

Week # Due Lab: MON/TUE Lecture 1: WED Lecture 2: THUR
1 Trial Functions Heat Equation
2 MATLAB: ERROR Weighted Residuals| FEM: Galerkin
3 ANSYS 1: INTRO. FEM: Galerkin FEM: Quadratic
4 FEM: 2D FEM: 2D
5 ANSYS 2: MESHING 1 | Mesh Generation Mesh Generation
& Assign 1. [ANSYS 3: MESHING 2 | FDM FDM/FVM
7 Solvers Solvers
8 QUIZ1 |ANSYS 4: UNSTEADY |QUIZ 1 Unsteady FDM

Unsteady FDM Unsteady FEM
10 Stability Stability
11  |Assign. 2 CFD CFD
12 |[Quiz 2 ANSYS 5: CFD QUIZ 2 Guest Lecture (compulsory)
13 Mon-Linear Solvers | Standards (compulsory)

- Quizin lectures

Assessment
Quizzes (10% x 2)

- 2 Quizzes will be held, each worth 10% of the course assessment
o Heldin the Wednesday Lecture on WEEK 8 and 12. Closed book. Some students will
be directed to sit their quiz in ABS Seminar Room 2060. This will be indicated by an
student Id range to be announced later.
- Exam* (50% )
o 2 hours held in the Exam period



o *Require 50% in exam to pass the course.
- Assignment (12% x 2)

o Assignments will involve writing Matlab code to solve steady and unsteady
problems. These will focus on heat transfer problems, but similar equations are
applicable to stress analysis and many types of engineering analysis.

o You will also use the ANSYS thermal solver package to solve assignment the
problems.

o You will learn the concepts in the lectures/tutorials, then get some initial assistance
with coding in the tutorials and learn ANSYS both in the lab sessions and in self
guided tutorials.

o The assignments will be difficult and lengthy. Manage your time effectively.

o Submit the assignments through Blackboard by 5pm on Friday of the week due. Late
penalties of 25% per day apply

Laboratories
- Labs will be held on Weeks 2,3, 5,6,8 and 12. Ignore other timetabled lab slots.
o Each lab has a weighting of 1%. The marking breakdown:
= (3 0.5% for completion of all the lab tasks and
= (3 0.5% for answering oral questions posed by the tutors after completing
the lab tasks.
- Ifalabis missed the tasks may be completed out of the lab session and presented to the
tutors at the start of the following lab.
- Work submitted later than the following lab session will not be marked without a formal
special consideration application.

Lecture 1. Wednesday, 2 August 2017

Approximate Solution by Trial Functions

- Nice intro to FE method. Residual equation, shape function, solution error
- Useful inits own right
- Critical thinking for engineering problems

Example 1.1: mass falling through air
A ball of mass m falls through air from a great height. The ball has an initial velocity of v = 0 at time
t = 0. From Newton’s law we know the governing equation

Fp



mazmg—bv2

(where b = %pACD

1 1
- Exact solutionis v = (%)2 tanh [(%9)2 t]

Approximate solution method:
- Trial function and collocation

1. Guess solution
Use intuition and consideration to guess solution shape.

- Graphing above, we know we:
o StartatO
o Accelerate
o approach vy
o each dt, velocity will be decreasing a bit

We could think of some solutions which might fit:

t
- exponential 7(t) = vy, (1 — e_?)
- quadratic: #(t) = ¢; + ¢t + c3t?
- sinusoidal: ¥(t) = ¢, sinwt
- higher order polynomial

2. choose trial funciton
using our intuition, we look at the exponential; where 7 is a time constant which we want to find

_t
17=voo(1—e r)



3. obtain residual equation
substitute ¥ — v into the DE

dv _ b?
m i mg 1%
Becomes
av - b2
m dt = mg v

t t
. . . ~ — v = .
using our trial function ¥ = v, (1 —e r) - j”e T gives

2
Yo ot = ma — bv2 (1 —e"t

m—e t=mg—bvy|ll—e =
T

This is an approximation, to make it exact; we need to add the residual R

Voo _L _t\?
m-——e T=mg—bv020(1—e T) + R

To simplify the equation, we know that the terminal velocity is when F = 0 - mg = bvZ; so we can
sub that in and cancel out m

4. collocation
we want this to have a residual of 0 somewhere (in general, we can only do a finite number of
points).

- The process of finding T to make R = 0 is collocation

t
For this problem; we'll try R = 0 halfway between 0 and v,; so whene = = 0.5

- This is the collocation step

Substituting this into our DE:

1 [mg
- [—(05)=9g—-9g(1-05)?%+0
TN b

1

Solving this, we get that 7 = 0.67 (gﬂb)E

So we can substitute this into our trial function to get

1
2

5= \/@(1 _e *7(gn) )

IR

v



Comparing to exact solution:
- Approximate in solid; exact in dashed

as

o] [ o]
= th (=

Velogcity (m/s)
i

10

10 15
Time (s)

- We can see where we set the residual to be 0

Residual (m/s?)

0
—
-

Time (s)

- Anderrorv —v

10

(a)



25 r 1 T

2
15
)
E
= 1
o
L.ILJ |
05
0
-0.5 L
0 5 10 15 20
Time (5)
o Note that residual is error in the governing DE equation; whereas error is the
difference in the final solution (2 different things)
= In the trial function and collocation method; we try and minimise the
residual (and not error)
L2 norm

We can compare different approximations by calculating the L, norm of the error:

(v(x) - 5(x7))

1
J 2
=1

1
J\4

J

1
scaled L, norm of solution error = 7 Ell, =

for J discrete locations along the rod.

Practice problem:

du 1+ _ 0
dt 2 %7

Domain isu € [0,1]; with u(t = 0) = 1. Try a second order trial function #(t) = 1 — t + at? (note
that this solves the boundary condition)

d 1+~_R
“ar 27 VT

(—1+2at)—§+(1—t+at2)=R

U=

2 1
at® + 2at —t Z_R

Make collocation pointt = 0.5;R =0

11



a(0.5)? + 2a(0.5) — (0.5) —% =0

Givinga = 0.8
~P=1-t+08t?

Lecture 2.

The heat equation

1D rod:

We will be looking at many heat transfer problems in this course. The governing equation for these
systems is called the ‘Heat Equation’. It can be derived using an energy balance on a control volume.
Consider a round metal rod shown below.

Consider a control volume of Ax, surface area A; = 2mRdx; cross sectional area A, = mR? and
volume V = AxA..

The heat in is Q;;, and out Q,,,;, over At time the temperature increases by AT
We have heat transfer of:
- Conduction in and out by q;_sx; q, ox (W/m?)
2 2

- Through outer rod surface g, (W/m?) (radiation and convection)
- Internal source heating q,, (W/m3) (eg, electrical current heating)

The heat balance can be written as:

Net heat = E;;, — Eoyt
pCpVAT = At(Qin - Qout)
[net gain = internal conduction + heating through surface + internal heat source)

- Density p

12



- G, specific heat of rod material (J/kgK)

Giving:
pCpVAT = At <[qi_% - qi+g] Ac + qAg + QvV>
2 2
So that
AT [ Ag;
pCpAcﬂ = T Ax Ay + qs2nR + q,A,
So that, as Ax — dx; At — 0t
oT [ aqi'
'DCPACE = —a Ax + CISZTL'R + CIUAC

Fourier’s law of conduction says that

_ dT|
Qi——Ka i

So we substitute

oT 0 dT
PCpAcE = —a(—lca)] Ay + qs2nR + q,A,

Simplifying into

oT k 0°T qs 2 q,

Ezﬁaxz +pCpR+pCp

We let p% = « (the thermal disfussivity) and get that:
14

oT 0%T s .
—=a— ource terms
Jt d0x?
Orin 3D:
or V2 o°r +S t
— =aV*— ource term
ot 0x2

Boundary Conditions
There are two common boundary conditions which we will encounter.

- Dirichlet
o Fixed boundary condition
»  Eg: temperature defined at boundary T(x = L) = 40°
- Neumann

13



o Gradient at boundary is defined
= Eg: constant heat conduction g¢(x = L) is known, so that %(x =1L)=

_ qs(x=L)
K
* Eg:insulated boundary q,(x = L) = 0, as heat conduction is q,, =

k| we eth| =0
dx ' X’ & dx ' X=L T

Example 2.1:

A round metal rod of length Lis held at T=0°Cat x=0and T = 100°C at x = 1 m. An electrical current
is passed through the rod generating an internal heat source of 10 kW/m3 . With no heat transfer
through the rod surface, the governing equation is,

T  « 62T+ Ty
6t_pC,f,6x2 pCy

Assuming steady state, gives

k 9°T q,

——— 4+ =0
pCy0x? ~ pC,

Solution with second order trial function

T = T(t) = Cl + sz + C3x(x - L)

AsT(0) = 0;T, = 100; weget C; = 0;C, = 1Lﬂ

100
T(t) = - X + C3x(x — L)

Giving the residual equation of:

k 0°T q, K Qv
=— + = 2¢c3) +
pCy0x%  pC, pCp 3 pCy,

- As this has no x dependence, we can set R = 0Vx; giving C3 = —%

- This is the exact analytical solution

100 g,
= Tx —ﬂX(X —L)

~

This remarkable result demonstrates the power of this approach. The trial function method (and
Finite Element method) is one of the few approximate methods where the exact result can be

14



obtained. We would rarely, if ever expect to see this however. If we were to change this problem
slightly, such as making qv a function of T, then this trial function would no longer be exact, but it
might still be a very good approximation.

Example 2.2:
A round metal rod of length L = 1m is held at T = 100-C at x = 0 and is insulated at x = 1m, so dT/dx =
0. The rod is cooled air flow from a fan with T,, = 0°C with heat transfer coefficient h (W/m2K).

Under steady conditions, with g; = h(T — T,), the unsteady heat equation becomes

0T 2h(T —T,)

- K 0x2 R
Letting y? = ’2{—2, we get
0o 0°T 27
0x2 4

Say for y? = 4:

Parabolic trial function
T =100+ C3x(x — 2)

Giving residual

02T -
R = Freie YT = 2C5 — y%(100 + Cyx(x — 2))
Asx € [0,1]; try R = 0 at x=0.5, giving
_ 400y?
3784 3y2
Cubic trial function
T =100+ C3x(x — 2) + Cyx(x? — 3)

Again, giving the residual equation of

aZT 27 2 2
=7 T =2C3+6C,x —y?(100 + C3x(x — 2) + Cyx(x? — 3))

and solve to find

winN

. . 1
- Asthis has two unkowns, we need to collocate twice. Choose x = 3

C; = 150.9; C, = —40.55

We can compare quadratic and cubic to exact solutions:

15



Temeprature (C)

Error (K)

Residual (K/m?)

100 T T T T

——— Exact Solution

4'jr'2x{x -2)
8—1—3",‘2

_____ T(x) = To(1+ )

1o} 1
3 . . . .
0 0.2 0.4 0.6 0.8 1
Distance (m)
4 r . r ,
2_ ';' \\\\ -
I' \\
0: ‘\\ h
R Error = T(x) — T(x)
_o} \\ 1
_4} N ] _ 442x(x—2)
4 \\\ ————— T(X] = T{)(]."‘ 8132 )
-6} “.__‘ .
g . . . .
0 0.2 0.4 0.6 0.8 1
x (m)
100 . . ' r
50f e 1
of T
Solutions:
_50 1 ——— Exact Solution
~100Ff 1
{'( = . 4'1;2x(x—2)
-sop {1 ----- T(x) = To(l+ —5757)
—200} 1
_2500 0.2 0.4 0.6 0.8 1
X (m)

16



Looking at the L, norm of each:

Parabolic Approximation Cubic Approximation
L2 Norm of solution error = 0.82K L2 Norm of solution error = 0.46 K
L2 Norm of Residual = 23 K/m? L2 Norm of Residual = 8.3K/m?

So we see the cubic approximation is better, as it has the smaller norm

Lecture 3. Wednesday, 9 August 2017

Method of Weighted Residuals

In the collocation methods before, we always set the residual R = 0 at some x value. What if we
wanted to increase the accuracy of the method?

We could do this by

- Increasing the order of the polynomial; T = ¢; + cpx + c3x2 + c4c® + -
- Method of residual minimisation

o Collocation

o Sub-domain

o Galerkin
- Number of approximations using piece wise solution

Residual minimisation
Say we have a trial function

T =Cix+Cyx?+ -+ Cpx™

Collocation:
The residual is minimised at discrete points only

R(x;) =0; Vi=1.2,..,n

Subdomain:
- The solution space is divided into ‘subdomains’, and the residual equally weighted in each
domain
f R(x)dx=0; Vi=12,..,n
Q;
Galerkin:

The residual is weighted by a function N;(x)

17



fR(x)Ni(x)dx =0; Vi=12,..,n
Q

Where N;(x) is a shape function which weights the residuals.

Shape function
In galerkin method, if T = Y, C;x', then N; = x*

Eg:
T(x) = cyx + cpx? + c3x3
Then

N1 =x;N2 =x2;N3 :x3

Example 2.2 (again): by different methods

A round metal rod of length L = 1m is held at T = 100°C at x = 0 and is insulated at x = 1m, so dT/dx =
0. The rod is cooled air flow from a fan with T,, = 0-C with heat transfer coefficient h (W/m2K).

Under steady conditions, with g; = h(T — T,), the unsteady heat equation becomes

0T 2h(T —-T,)
dx2 R

=K
T =100 + C3x(x — 2L)

Letting y? = i—;l, we get

0%T )
0=z V7
Say fory? = 4:
We get the residual equation:
o~
T
“axz Y

18



Collocation:
Asx € [0,1]; try R = 0 at x=0.5, giving

_ 400y?
37 8+ 3y2
Subdomain

R(x)dx =0; Vi=1,2,..,n
Q;

As there is one unkown, only 1 equation is required (one domain), so the subdomainis all x € [0, L]

L 27

L
R = — —y?Tdx =
f (x)dx Lzo I y“Tdx =0

(2C——y2(1004-Cx(x——2L)))dx =0
0
100y?

222
2+§)/L

-»>C =

- Different to the constant from collocation

Gelarkin:
For

T = 100+C3

Ny

There is only 1 unkown, and so n = 1; with the final term of

N; =x(x —2L)

J R(x)N(x)dx = fL (zc —y2(100 + Cx(x — 2L))) (x(x —2L))dx = 0
Q 0

Integrating, and solving to get

100y2

4 252
2+5yL
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Solution Comparrison:

100

90|
80l
70k
B0l

f (K)

50k
40t N
30+ -

20+ -

10

0.4 0.6
® (m)

0.8

Solutions:
. Collocation, € = T_PT
- 4
_____ Sub-domain, C = f%]-rfs
- _ -2 T;
——— , Galerkin, C = 2—_-1_;_"3-

Error: The Ls norm of solution error is:
0.82K for Collocation at x = L2

1.6 K for the Sub-domain method

0.57 K for the Galerkin method.

- L2 norm of the galerkin is smallest, followed by collocation and subdomain (which is very

poor)

- Galerkin is a very good approach

Lecture 4. Thursday, 10 August 2017

Galerkin Finite Element Method
- Piece wise solution:

Use piece-wise solution e.g. Finite Element Method. Can improve the accuracy

element 2

r| T, T

T, T

element 4

Solution: define trial function
- Use alinear trial function.

Eg: for element 1, we can approximate

Where c; , are unkown.

But: a better way is:

T(x) = cix + cyx

- Weknown at xy;T(x;) =Ty, and so

20



Tl = C]_ + szl

TZ - C]_ + szz
Which we can eliminate C; ; to find
X, —X X — X
T(x) = T1 + TZ
X2 — X1 X2 — X1
or
[T(x) = Ny )Ty + N (xX)T |
With
Xy — X X —Xx
N, = 2 ;and N, = !
X2 — X1 X2 — X

The global temperature is described by piece-wise linear functions for each element. Now we just
have to obtain our residual equation and solve to find T, 3 4

T
T 4 T;
¥
N N,
X, xs=L

Weighted residuals
We use the Galerkin method to find the nodal values of T; (our unkown fitting constants)

- For this example on element (1), we need 2 equations for T; and T,
f R(x)N;(x)dx
Q1)

Example 4.1:

Recall the heated rod problem from example 2.1. A round metal rod of length L is held at T = 0°C at x
=0and T =100-C at x = 1m. An electrical current is passed through the rod generating an internal
heat source of gv = 100 kW/m3. If there is no heat transfer through the rod surface, the governing
equation for the steady state solution can be written,
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where = qv/ =2000 k/m2 with = 50W/mk. Find T(x) using the finite element Galerkin method using
linear trial functions. Discretise the domain into four elements of equal length x.

solution:
rod divided into 4 elements:

g, x)
 EEEEEEEEEEEEREERER
element 1 element 2 element 3 element 4

F
L

Ax
| » X
- The temperateraures at x = 0; L are givenas Ty = 0; Ts = 100. We want to find T 3 4, and
we can linearly interpolate between all T

Eg: If our residual equation is

__dZT

R -
dx?

+vy

We have the substitution

f CFT+ >N()d 0; i=12
— 4y |N)dx=0; i=1,
@) \dx? !

- Infinite element method; we can only solve a DE of the same order of our trial function
polynomial.
- To get around this, we'll need to use integration by parts.

For the first element: we define the linear trial function

T(x) =c; + cpx

Finding that:
X X X—Xx
T(x) = 2 T; : T,
27X X2 — X1
or
T(x) = Ny (x)T; + Ny (x)T,
Where
Xy — X X—X
Nl == z 5 and Nz = !
X2 — Xq X2 —Xq

- Np, are the shape function or interpolation function of the element (or basis function)
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x=x,N=1,N,=0;x =x,,N,=0,N, =1
Ni+N, =1
For this problem, every element has 2 interpolation functions, which we distinguish with Nl(j)
For the other elements:

T®@(x) = NP @)T, + NP ()T,
T®(x) = NPT + NO (0T,
T®W(x) = NP )T, + NS (0)T,

- A global temperature is now described by piecewise linear functions for each element

N=0
x;=0 X,

| 1'1".-]'!

Figure 2: An example piece-wise linear solution for T'(z) is illustrated together with interpolation
funections for elements (1) and (3).

Obtaining weighted residuals
We now use Galerkin to find the nodal values of T

Above: we have that

f (d2T+ >N()d 0; i=12
— 4y |N)dx=0; i=1,
) \dx? :

So that:
X3 dZT Xy
j WNi(x)dx +j yN;(x)dx = 0;i =1,2
X1 X1
2 X
We can write f;:%Ni (x)dx = [Nl-(x) %]xz + f;clz yN;(x)dx ;i = 1,2, so that overall
1
%2 4T dN;(x) dTy? (% _
L T dx dx = [Nl-(x) a]x +fx yN;(x)dx; i=1,2
1 1 1
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X
- [Ni(x) 3—2]; is the boundar condition
1

- f;lz yN;(x)dx is a forcing function

dT dN; .
We need —; — to solve this:
dx " dx

Xy X — X
N1 = 5 and Nz =
X2 — X1 X2 — X1
So we get
N, 1 an, 1
dx  x,—x; dx X, —x;

As T = N]_T]_ + N2T2

dT dN; dN,
_— —_—=—— 1 —T2 = —
dx dx dx X, — X

(T1 = T2)

- Thisindicates that the temperature gradient across each element is constant; as T; — T, is
constant. (we assumed a linear function, so this is obvious)

Substituting this in, we get that: fori = 1

szdeNi(x)d _ [N( )dT]xz+fx2 oy
x, dx dx x= ixdxx1 xlyixx
¥ T,-T, -1 dT dT *2y(x, — x)
- dx =N — —N. — ——(x)d
[ e O A PG PR e SO
As Ny (x2) = 0; Ni(xq) =1
dT Xy — Xq
T, —Ty) = ——
xz—x1( 1—T2) dx |x1+)/ >
Similarly, if i = 2
X2 — X1

daT
(-T1+T) =+ |x2+V

Xy, —Xq dx

2

- % | x,,x, (boundary gradients) are unkown; but they will largly disappear near the end

Matrix
We now want to do this for each element. To make this easy, we’ll put this as a matrix:

dT| Ax
1 /1 —1\(Ty _ Cdx ' )/7
E(—l 1)<T2)_ dT Tl Ax

a|x2 V?
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