
Lecture 1 - single cell electrophysiology, concepts and methods

Lipid Bilayer & Membrane Permeability

- electrical field = separation of charge and proximity of how close or far the charges are from each other.
- The more lipid soluble and lighter weight the smaller the permeability
- The electrical field of the membrane being large causes a change in the voltage and is strong and large enough to cause deformation in proteins.

Transmembrane proteins allow solutes to cross cell membranes

- Cholesterol provides structure and stability
- Aquaporins=water reabsorption and water transport
- Simple passive diffusion ie. Oxygen
- Symport = movement of ions (eg. sodium) into the same direction
- Antiport = movement of ions in the opposite direction.

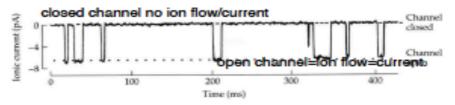
Movement of charged solutes

- Electrochemical gradient has 2 components
 - 1. Concentration gradient chemical
 - ion/solutes moves down the conc gradient
 - 2. Membrane potential electrical
 - -influenced by electrical field across the membrane

Nature of ion channels in cell membranes

- Leakage channels always open
- 3 types of Gated ion channels:

1. voltage gated

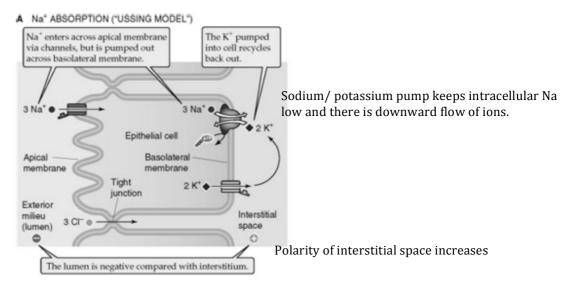

- activated by change in electrical field

2. ligand gated

- conformational change causing them to open
- binds to receptor on the extracellular site. Ach released

3. stretch activated

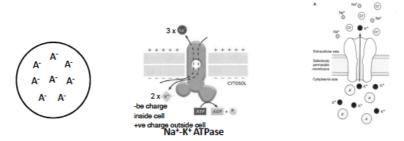
- mechanical stress, mechanosensitive, categorise in selectivity the way the channels open.
- Mechanically gated hair cells, K+ flows in causing membrane potential.



Ionic current flow in response to channel will switch on / off when needed. gating

Ion channels and membrane potentials are important in ALL cells

- Membrane potential is a major force on ions and molecules in all cells
- Osmotic balance in cells ions are most abundant dissolved soutes
- Ion flows and voltages can control fluid flows in specialized epithelia sectreion and absorption
- Ion flows and voltages control many other phenomena :
 - sensory signaling
 - force generation calcium (smooth, skeletal and cardiac muscle)
 - intracellular enzyme cascades involved in signaling
 - gene expression, cell growth and cell death.


Salt and Fluid transport by epithelia

Na⁺ transport \rightarrow Trans-epithelial voltage \rightarrow drive Cl⁻ flux \rightarrow \uparrow osmolarity \rightarrow Fluid transport

Establishing a membrane potential

- Trapped organic anions (Gibbs-Donnan effect)
- Na⁺/K⁺ pump Na⁺/K⁺ concentration gradients net electrical negativity
- Cell membrane preferentially permeable to K⁺

-ve charge inside cell and +ve charge outside the cell.