Soil Science – PSC104

Topic 1: Introduction-Soil Properties and Composition

Soil importance/influence on plant growth:

Physical medium for plant growth

- Root depth (anchorage)
- Erosion
 - Surface
 - Sub-surface
- Access to water and nutrients-eg. Acid layer and compaction/hard soil layer limit plant growth

Supply water

- Water infiltration-getting water into soil
 - Bigger channels/pores (air spaces), less of them, in soil move more water (aggregate=clod)
- Water storage
 - o Smaller pores, more of them, hold more water
- Water drainage
 - Larger pores more drainage, faster drainage
 - Bad drainage=waterlogging, no air in soil

Supply oxygen

- O₂ required for normal respiration in plants
- Soil must be able to allow air to diffuse to roots
- Microbes in soil require oxygen
- Red coloured soil (large amount of iron), large pores=oxygen in soil
- Gley=bluey green colour indicates a lack of oxygen in soil, dead microbes

Provide stable chemical environment

- Essential elements
- No chemical problems-toxins, deficiencies
- Salinity
- pH

Provide stable biological environment

Home for living organisms-only some good

Summary of soil influence on plant growth:

- Physical: roots, water, aeration
- Chemical: nutrients, pH, salinity
- Biological: function, limitations

Soil influence on animal production:

- Quantity of pasture
 - Influenced by soil fertility
- Quality of pasture
 - Influenced by soil fertility
 - Soil low [N]=pasture low [N]=low protein content =low growth rate
- Disease/animal health
 - Liver fluke exist on waterlogged land
 - Sandy soil causes increased wear of animal teeth (especially in sheep)
 - Essential elements for animals:
 - Cobalt
 - Selenium
 - Iodine
 - Fluorine

Soil influence on the environment:

- Soil erosion
 - Dust storms
 - Runoff into rivers (nutrients also runoff causing algae blooms)
 - Soil pollution (algae)

Composition of soils:

- Determines suitability for growth
- 25% gas, 25% liquid, 50% solid

Soil solids (solid phase):

- Comprised of:
 - Inorganic materials
 - Do not contain carbon
 - Residual minerals from rocks
 - Minerals are formed as rocks are broken down
 - Organic materials
 - Has carbon in structure
 - Humus (resistant to breakdown)
 - Fresh (not yet decomposing) and decomposing
 - Living (worms and microbes) make up 1-5% of soil mass
- Properties:
 - o Pores-smaller in compressed soil
 - Measure of compaction is bulk density
 - Increase in bulk density occurs after compaction
 - Bulk density (ρ_b)=mass of oven dry solids/total volume of soil (unit is Mg/m³-mega grams per cubic metre). Collect known volume of soil, oven dry it at 105 degrees for 24 hours.
 - Bulk density is the ratio of mass of oven dry solids to the total volume of soil including pores.
 - Oven dry is running oven at 105 degrees for 24 hours.
 - Average soil bulk density = 1.0-1.2 Mg/m³
 - Compacted soil bulk density > 1.7 Mg/m³
 - Organic soil bulk density = 0.3 Mg/m³
 - Compacted soils have less/smaller pores which effect water infiltration, drainage, etc.
 - Particle density (absolute density) is the ratio of mass of solids to the volume of solids (units are Mg/m³).
 - Particle density = mass of solids/volume of solids
 - Cannot be changed by management
 - Average soil particle density is 2.65 Mg/m³
 - Organic soil particle density may be around 1.3 Mg/m³
 - Total porosity is the proportion of the soil volume occupied by pores including those containing air and/or water (units are %).
 - As soil compacts, porosity decreases

Soil solution (liquid phase) comprised of:

- Water that is held in soil pores
- Dissolved materials (cations and anions=nutrients)

Soil air (gas phase) comprised of:

- Nitrogen gas (N₂)
- Oxygen gas (O₂)
- Carbon dioxide (CO₂)-higher CO₂ concentration in soil than in air (harder for air to escape)