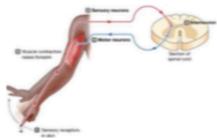

2. Nervous system:

- Central nervous system- brain and spinal cord, main control centre
- Peripheral nervous system
 - o nerves branching off the brain
 - o for communication
 - works in both directions
 - Sensory division (afferent) picks up sensory stimulus
 - Motor division (efferent) sends from brain to muscles and glands
 - Somatic nervous system – voluntary
 - Autonomic nervous system- involuntary e.g. heartbeat
 - Sympathetic divisionmobilises body

Figure 11.2: Levels of organization in the nervous system



- Parasympathetic division relaxes the body
- Glial cells provide support, nutrition, insulation and help with signal transmission
 - o CNS:
 - Astrocytes exchange materials between neurons and capillaries
 - Found in CNS, most abundant and versatile
 - Microglial cells immune defence against invading microorganisms
 - Ependymal cells create, secrete, circulate cerebrospinal fluid
 - Oligodendrocytes- produce an insulating barrier (Myelin sheath)
 - o PNS:
 - Satellite cells surround/ support neuron cell bodies (like astrocytes)
 - Schwann cells like oligodendrocytes
- Neurons
 - Some of the longest lived cells in the body
 - o Amitotic Irreplaceable
 - High metabolic rate need steady replacement of energy
 - Sensory (afferent) transmit impulses from sensory receptors toward CNS (most are unipolar) - long dendrites and short axon
 - Mechanoreceptors mechanical stimuli tension, pressure, distortion
 - Thermo receptors temperature
 - Nociceptors injury, pain
 - Photoreceptors electromagnetic radiation wavelengths of visible light
 - Chemoreceptors chemical stimuli senses (taste, smell etc.)

- Motor (efferent) impulse moves from CNS to the rest of the body (most are multipolar) – CNS to muscles – long axon, short dendrites
- Interneurons (association neurons) impulse moves between sensory and motor neurons. found in CNS (most are multipolar) - connect neurons – different shape
- Differentiating nerve cells:
 - How many processes extend from the body (multi/bi/unipolar)
 - Which way an impulse travel through a neuron in relation to the brain and spine (sensory or motor neurons)
- E.g. multiple sclerosis abnormal sensations, visual disturbances, motor dysfunctions, imbalance, pain

Nerve cells:

- Powered by electrical impulses and communicate with other nerve cells through chemical signals
- 3 basic phases:
 - reception: Chemical signals are received from neighbouring neurons
 - Integration: incoming signals are assessed
 - Transmission: Signals are passed on to other receiving neurons

Neuron structure:

- Dendrite: detects chemical signals from neighbouring neurons
- Cell body (soma): collects and integrates information
- Axon: transmits electrical impulses
- Terminal buttons: bulbous end of an axon
- Synapse: supports chemical communication between neurons
 - Synaptic cleft: narrow gap between terminal button (presynaptic membrane)
 and dendrite (postsynaptic membrane) of neighbouring neuron
- Myelin sheath: encases and insulates axons
 - Composed of glial cells
 - o Nodes of Ranvier: spaces between glial cells

Neurotransmission:

- Electrochemical
- Signals conducted are created by movement of salts- sodium, chloride, potassium
- Neurotransmitter: chemical substances that transmit signals from one neuron to another
- Neurotransmission- Neurons do not ever touch communicate between neurons

