NEUR30002 Course Summary Notes

Table of Contents:

Lectures 1-9

Astrocytes
Action Potentials
Classes of Receptors
Monoamines
Olfaction and Taste

Lectures 10-20
Page 16
Synapses
Measuring Neural Activity
Neuroplasticity and Memory

Lectures 21-35 Page 33

Gut Microbiome's Role in Neurological Disease

Dopamine

Viscosensory Afferents

Enteric Nervous System

Neurogenesis

Neural Control of Respiratory Systems

Autonomic Nervous System

Page 2

Lectures 1-9

Astrocytes

- Location
 - o CNS only
 - Restricted to small areas where processes patrol
 - Neurons are squished in between
- Roles
 - Secrete neurotrophic factors (support growth, survival and differentiation of both developing and mature neurons)
 - Take up K⁺ and neurotransmitters
 - End action potentials, and prepare synaptic cleft for the next one
 - Must be rapid as small changes have large effects on the synaptic cleft concentration
 - K+ crosses between astrocytes linked by gap junctions (6 connexins form connexon on each cell)
 - Gap junctions discriminate only by size enables full ion flow preventing charge build-up
 - Responsiveness/signalling
 - Via neurotransmitters
 - DO NOT conduct action potentials
 - Depolarisation of cell initiates Ca²⁺entry, releasing gliotransmitters which jump between cells via gap junctions
 - Also occurs through vesicular release
 - Allows signalling across larger gaps (with ATP used as transmitter)
 - Binds via GPCRs on other astrocytes
 - o Generally act as a bridge between many elements in the CNS
 - Neurons
 - Blood vessels
 - Neighbouring domains
- Blood-brain barrier
 - o Processes ("arms" of astrocytes) associate with endothelial cells of blood vessels
 - Prevents brain cells absorbing everything out of blood vessels only what is required is transported across
 - Eg: high level of blood glutamate after meal prevented from crossing blood-brain barrier and overstimulating neurons

Action Potentials

Resting Membrane Potential (RMP)

