Topic 5

Bank capital adequacy regulation

Rationales for Capital Regulation

- Bank Equity Capital:
 - Must be sufficient to *absorb* unanticipated losses
 - Write-off: profit↓ → cumulated retained profits↓
 - Share capital: cannot be taken away for loss, but
 - Allow retained profit to go negative
 - Can rebuild cumulated profits by not distributing dividends
 - Objective:
 - Protect creditors (deposits & other lenders to the bank)
 - Maintain stability of the financial system
- Rationale for regulation and international regulation
 - Bank *underestimate* the safety aspect (private cost of failure < social cost)
 - → tend to choose a level of capital lower than what is socially desirable
 - The harmonization of the rule is a necessity when financial markets are global
- Principles of Regulation
 - Main regulation imposed on banks (*pre-emptive* approach)
 - Enforce a *minimum capital level* for banks → as a proportion of some measurement of the assets
 - Aim: backing the risk

Requirements of Basel Capital Regulation

- <u>Basel Accord</u>: *International regulation* to all industrial countries though BIS (Bank of International Settlements)
 - *Basel I* (1998): applicable from 1993
 - Basel II (2004) applicable from end 2007
 - Basel III (2010) applicable from January 2013
- Principles of Basel Accords
 - 1) First pillar Impose a minimum size to the regulatory capital (as a % of the risk-weighted asset side)
 - Risk Weighted Asset = sum of assets each weighted by a coefficient representing exclusively *credit risk*

```
Risk \ Asset \ Ratio = \frac{regulatory \ capital}{risk \ weighted \ assets} \geq minimum \ ratioregulatory \geq minimum \ caiptal \ requirement = minimum \ ratio \times risk \ weighted \ assets
```

2) Second pillar

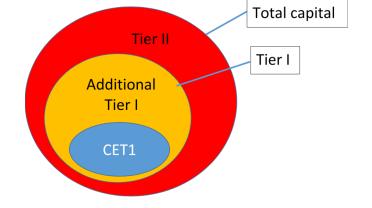
- Supervisory review process Supervisors will evaluate bank measurement techniques with respect to credit and operational risks and possible impose a different minimum capital ratio

3) Third pillar

- Market discipline Banks are required to increase their information disclosure (measurement of risk and operational risk)

• <u>3 minimum ratios</u> to be met simultaneously (Basel 3)

When capital base is:


- Common Equity Tier 1 capital → minimum ratio: 4.5%
- *Tier 1* → minimum ratio: 6% (used to be 4%)
- *Total equity* → minimum ratio: 8%
- Minimum Leverage ratio
 - minimum Tier 1 leverage ration: 3%

$$\frac{Tier\ 1}{Total\ asset} \ge 3\%$$

- New to Basel III to be implemented in 2018
- Other risks covered by minimum ratio
 - Market risk (amendment during Basel I)
 - Operational risk (since Basel II)
 - Interest rate risk in Australia
 - Not incorporated in weights

Regulatory Capital

- Capital in Basel regulation
- Tier 1 (highest quality)
 - Common equity Tier 1 (fundamental tier I)
 - A component of Tier 1 capital that consists mostly of common stock held by a bank or other financial institution
 - Ordinary shares, retained earnings, current year earnings, reserves from revaluation of securities, foreign conversion reserves. Additional Tier 1
 - Perpetual non-cumulative preference shares, perpetual non-cumulative capital notes
- <u>Tier II</u> (lower quality)
 - Perpetual cumulative preference shares
 - Term subordinated debt, life limited redeemable preference shares

Risk Weighted Assets (in Basel)

Adhoc weights

Each component of the asset side was weighted according to the *nature of the issuer*

- Cash and loans to OECD governments: 0
- Loans to non-OECD governments, local authority lending, interbank lending: 0.2
- Mortgages: 0.5
- Commercial lending: 1
- Basel I weight not risk-sensitive enough

Assets Good bank	Assets Bad bank	£ million	Basel I Weight	•	RWA for good and bad banks = $45 * 0 + 20 * 0.2 + 25 * 1.0 + 10 * 0.5 = 34$
Sovereigns Loans: Canada government (AAA/Stable/A-1+)	Sovereigns Loans: Belize Government (CCC+/Negative/C)	45	0.0	•	Required Tier 1 capital for good and bad banks = $34 * 4\% = 1.36$
Loans to other Banks: HSBC Bank plc (AA-/Stable/A-1+)	Loans to other Banks: B.I.N. Bank (CCC+/Stable/C)	20	0.2	•	Required Total Capital for good and bad banks $= 34 * 8\% = 2.72$
Corporate Loans: Canon Inc (AA/Stable/A-1+)	Corporate Loans: PetroQuest Energy Inc(CCC+/Stable/)	25	1.0	•	Regulatory Arbitrage: ∵capital requirement is defined by bucket not the real level of risk
Household Mortgage Loans	Household Mortgage Loans	10	0.5		∴banks have an incentive to lend into highest risk projects of the category

→generate highest return

2) Internal Ratings Based (IRB) approach

- Banks can use their own credit risk models to estimate the risk of their borrowers:
 - Probability of default, loss given default, exposure at default, effective maturity
- Then a risk-weight function converts these inputs into a risk right
- Weight risk coefficients (standardized) < Weight risk coefficients (IRB)
 - → create an inventive for bank to improve their own assessment of risk
- Treatment of *residential loans*:
 - No external credit rating for households
 - Residential mortgage loans weight depends on Loan to Valuation Ratio (LVR): 0-80% LVR: 35% weight

■ 80-90% LVR: 50% weight

• 90-100% LVR: 75% weight

■ >100% LVR: 100% weight

	Basel 1	Basel 2	Basel 3
Common Equity Tier 1	2%	2%	4.5%
Tier 1	4%	4%	6%
Total equity	8%	8%	8%
Weight	Adhoc by type	Credit rating conversion table IRB	Credit rating conversion table IRB

Topic 6

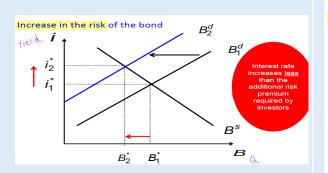
Behavior of interest rates

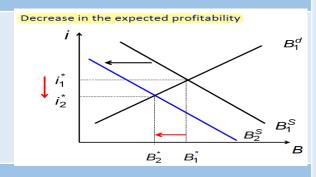
Term and risk structure of interest rates

The behavior of interest rates

- Type of security: bond
- Stocks: demand for bonds (quantity of bond investors want to hold) and supply for bonds (quantity of bond issuer want to issue)
- Higher expected yield → larger demand → smaller supply
- Determinants of demand and supply of a bond:

Demand curve for a bond:


- Right for wealth and liquidity of the bond (higher wealth/more liquid
 → higher demand)
- Left for risk of the bond, default probability of the bond and expected inflation (higher expected inflation → lower demand)
- Left for liquidity of alternative assets (more liquid the alternative assets → lower demand)
- Right for risk of alternative assets, default probability of alternative assets

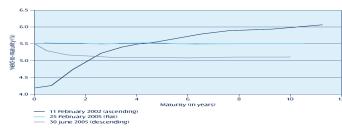

Supply curve of a bond:

- Expected profitability of investment opportunities (higher profitability
 → higher quantity supplied)
- Cost of borrowing (higher cost relative to other sources of funds → lower supply)
- Expected inflation (increase in expected inflation → increase supply → lower real cost)

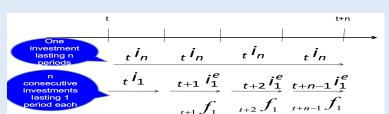
Equilibrium interest rate

Interest rate is in *nominal* terms

 Expected inflation↑ → nominal interest rate↑ → Fisher Effect


The Term Structure of Interest Rates

- The relationship between yield and term to maturity → measured with other factors held constant (e.g. default risk, marketability) → x-axis: Residual maturity; y-axis: promised nominal yield to maturity
- Three empirical facts:


Expectations

Theory

- 1) The interest rates on bonds of different maturity move in the same direction (all up or down)
- When short-term interest are low \rightarrow YC is more likely to be ascending; when short-term interest rates are high \rightarrow YC is descending
- 3) YC almost always slope upward
- Theories of term structure:

- - An explanation of the shape of the yield curve → YC is determined by investors' expectations of future interest rates
 - E.g. upward curve → interest rate↑
 - Perfect substitutability among maturities: (invest in one n period maturity bond = invest in n consecutive 1 period bonds)
 - O Any difference in yields between the two transactions would give rise to arbitrage → affect prices → bring back the equality

- $a^ib \rightarrow a = starting\ period; b = duration\ for\ rates$ \circ E.g. $1^{i^e}1: 1$ year interest rate starting at time 1
 - o If 'a' = $0 \rightarrow i$ o If 'a' $\neq 0 \rightarrow i^{\epsilon}$
- Long- term interest factor t^i n \rightarrow a geometrical average of the current and expected future short-term interest rates:

$$_{t}i_{n}=\frac{t^{i_{1}+}_{t+1}i^{e}_{1}+_{t+2}e_{1}+\cdots+_{t+n-1}i^{e}_{1}}{n}$$

- Ascending/expectation of increase: $(1 + t_3) = [(1 + t_1)(1 + t_1)(1 + t_1)^2]^{1/3}$; $(1 + t_4) = [(1 + t_1)(1 + t_1)(1 + t_1)^3]^4 \rightarrow t_1 < t_3 < t_4$
- Explanatory power: (1) compatible with fact 1: increase in current short-term interest rate affects all other rates → current long-term rates also move up; (2) compatible with fact 2: low level of ST rate → expect to increase → higher LT rate; (3) cannot explain why YC is upward
- Segmented

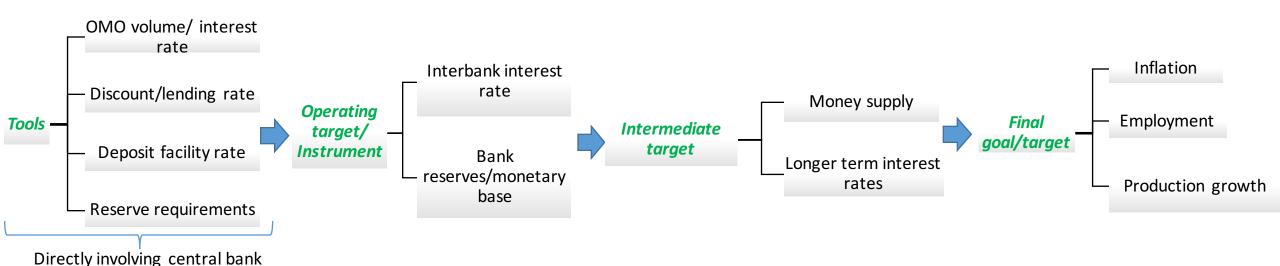
Markets Theory

- Bonds with different maturities are *absolutely not substitutable* → each yield depends on demand and supply for that maturity
- Only explains fact 3, cannot explain different shapes
- Liquidity premium Theory
- Bonds with different maturities are *imperfectly substitutable*
- Long-term interest rates = an average of current and future ST interest+ premium *I*:

$$_{t}i_{n} = \frac{t^{i_{1}+t_{1}i^{e}}+t_{1}^{i_{1}+t_{1}^{2}e_{1}+\cdots+t_{1}^{n}}+t^{i_{1}e_{1}^{2}}}{n} + t^{i_{1}}I_{n}$$

• Fact 3 is explained: expectation of increase \rightarrow ascending curve +I; decrease \rightarrow ascending turve

Topic 7


Implementation of Monetary Policy

Part I: Money creation and monetary policy tools

Money Multiplier

Monetary Policy Tools and Targets

Monetary policy transmission

Open Market Operations (OMO)

- The central bank *purchases (sells) securities* in exchange for providing (withdrawing) central bank money
- In Australia, OMO implemented through auctions with <u>mainly commercial bank</u>
 In US, OMO implemented through auctions with <u>primary dealers</u>, sometimes not bank

Repurchase Agreements (REPO):

- The central bank buys a security from a bank's assets and agrees on selling back → collateral
- Outright purchase of Treasury security → Indirect finance → *Monetization of the debt*

REPO in Australia

Banking System

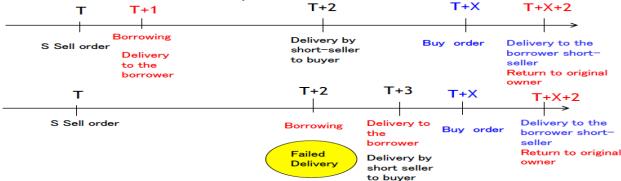
banking System				RDA				
Assets		Liabilities		Asse	Assets		Liabilities	
Governmt Securities	-\$100			Securities	+\$100	ESA	+\$100	
Reserves (ESA)	+\$100							
	D	<u> </u>						
Banking System				RBA				
Assets		Liabilities		Asse	Assets		Liabilities	
Governmt Securities	+\$100			Securities	-\$100	ESA	-\$105	
Reserves (ESA)	-\$105	Equity	-\$5			Equity	+\$5	

REPO in US

Banking	System	Federal Reserve			
Assets Liabilities		Assets	Liabilities		
Reserves (fed funds) +\$100	Deposits dealers +\$100	Securities +\$100	Fed funds +\$100	-	

Bankin	g System
Assets	Liabilities
Reserves (fed funds) -\$105	Deposits dealers -\$105

	Federal Reserve				
es	Assets	Liabilities			
ers	Securities -\$100	Fed funds -\$105 Equity +\$5			


- Securities accepted for OMO by RBA from banks:
 - Government securities
 - Banks bill, bank issued bonds, CD, foreign currency
 - ABCP and RMBS for repos exclusively

RBA OMO auctions

- Daily Discriminatory variable-rate auctions auctions
- Banks (and dealers) have 15 minutes to communicate their bids or offers to the RBA and also maturity preference for REPO
- The Reserve Bank of Australia (RBA) controls the quantity in its auctions and the price in its liquidity facility.

Naked Short Selling:

- No lending arrangement to get the securities has been made at the time of the sell order
- The seller however should get the securities for the delivery date

Surprisingly, when a security has been bought prior to the short sell order it is considered as naked short sale:

