MAST10011 Course Summary Notes

Table of Contents:

Chapter 1 – Epidemiology and Study Design

Chapter 2 – Data Analysis

Chapter 3 – Probability

Chapter 4 – Probability Distributions

Chapter 5 – Estimation

Chapter 6 – Hypothesis Testing

Chapter 7 – Comparative Inference

Chapter 8 – Correlation and Regression

Chapter 1 - Epidemiology and Study Design

Basic Principles

- To reduce error (confounding) through validity and reliability:
 - o Reliability consistency of results
 - Validity how truthful conclusions and inferences are (must be reliable to be valid)
 - Internal how accurately results represent study group
 - External how accurately results represent overall population
- Methods:
 - o 1. Control
 - Neutral effect, baseline for comparison (often placebo)
 - 2. Randomisation
 - Weakens link between C and D by evening out effect of uncontrolled confounding variables over all subjects (more balanced subject pool)
 - Human randomisation generally not very random
 - Non-human should state computer software used
 - Can only do for clinical trials (cohort/case-control studies require selected samples)
 - 3. Replication
 - Increasing number of individuals in study (sample size) to increase validity
 - 4. Balance
 - Ensuring control and experimental groups are of similar size to achieve more accurate results
 - 5. Blocking/Stratification
 - Chunking by a group of similar study units (parameters: age, gender, socio-economic category)
 - Failure to do so = systematic error (non-bell curve sample)
 - Systematic as would cause same error across entire study
 - o 6. Blinding
 - Makes control more effective by reducing confounding variables and allowing placebo effect to occur
 - Blind study patients are kept in the dark as to treatment (placebo or real drug)
 - Double-blind study both patients and doctors and kept in the dark
- Terms:
 - Experimental unit sample/study group used in experiment (should represent population as best as possible)
 - Stratified sample one which has been selected so as to be representative of a larger population
 - Confounding variable a variable that affects the relationship between the factor and outcome we want to measure (C)
 - Lurking variable a confounding variable we don't even know exists
 - Explanatory/treatment variable the variable we want to measure (E)
 - Response variable the effect/outcome (D)
 - Point estimate picking a single value (eg: mean) to use as a prediction of entire population
 - Incidence the rate at which people contract the disease
 - o Prevalence how many people have a condition in a population at a moment in time

Types of Studies

- Experimental clinical study (drug is administered/explanatory variable is controlled)
- Observational just observing, not controlling, explanatory variable
- Cohort study
 - o Following a designated group of individuals who are followed over a period of time
 - Select an accurate representation of the study group required

