Lecture 5 Financial options ## **Basic Instruments** #### 1. Bonds Long risk-free bond → buy #### 2. Stocks • Long a Stock Short risk-free bond → sell Short a Stock Mechanics of **Shorting a stock**: - To short a stock, you first borrow it and then sell it - When you have to return it, you buy it in the marketplace - The stock is returned either when you close our your position, or you are forced by the lender to return it - Cost of buy back = $gross pay-off = -S_T$ ## 3. Forward/Futures Contracts - <u>Forward contracts</u>: agreement between a buyer and a seller calling for delivery of a *specified amount* of a *specific asset* at a *specified (future) date*. - Strike or exercise price → X Expiration date of the forward contract → T - Long a Forward Short a Forward # **Options** Call option: a contract that gives the buyer the right to buy the underlying security at a pre-specified price within a pre-specified period of time - Sell Call Option - Buy Call Option • Put Option: a contract that gives the buyer the right to *sell* the underlying security at a pre-specified price within a pre-specified period of time - Buy Put Option - Sell Put Option # Exercise styles - <u>European options</u> (both calls and puts): only be exercised *on* the expiration date of the option - American options (both calls and puts): may be exercised on or before the expiration date of the option →more exercise options →more expensive # **Portfolios of Options** - Build a portfolio: stock + risk-free bond + call option on stock - Example: - Suppose that you are long a risk-free coupon bond with a face value of \$100 and a call option on CISCO stock with a strike price of \$125. Graph the payoff from the portfolio as a function of CISCO's stock price. | | Stock Price | | |--------------|---------------------|------------------------| | Position | $0 \le S_T \le 125$ | 125≤ S_T ≤ \propto | | Long Bond | \$100 | \$100 | | Call option | 0 | S _r -125 | | Net position | \$100 | S _r \$25 | # **Put-Call Parity** ### • Example 1: - Suppose you buy a European call option and sell a European put option with a maturity date of T and an exercise price of X. How much will your options be worth at the end of T years? | Position | 0 | Т | |--------------|-----------------|---------------------------| | Buy Call | -C _E | max[0,S _T -X] | | Sell Put | P_E | -max[0,X-S _⊤] | | Net position | $P_E - C_E$ | S _T -X | ### Example 2: - Now suppose you bought a share today for a price of SO and simultaneously borrowed an amount of X(1+r)-T. How much would your portfolio be worth at the end of T years? Assume that the stock does not pay a dividend. | Position | 0 | Т | |--------------|---------------------------|-------------------| | Buy Stock | -S ₀ | S _T | | Borrow | PV=X(1+r) ^{-T} | -X | | Net position | X(1+r)-T - S ₀ | S _T -X | # Lecture 6 ### **Real Options** - Expansion Options - Timing Options - Learning Options ## Net Present Value You are considering opening a café in Brisbane. Risk 1: Level of demand Risk 2: Market risk #### Risks & Payoffs: #### Assume: - Initial investment = \$100K - CF continue for 10 years, starting year after initial investment - $R_f = 2.1\%$; $r_m r_f = 8.4\%$; $\beta = 1 \rightarrow discount \ rate = 2.1\% + 1 * 8.4\% = 10.5\%$ • $$E[CF] = 0.8 * (0.25 * $32 + 0.5 * $22 + 0.25 * $12) + 0.2 * (0.25 * $22 + 0.5 * $12 + 0.25 * $2) = $20K$$ • $$NPV_0 = -\$100 + 20 * \left[\frac{1 - (1 + 10.5\%)^{-10}}{10.5\%} \right] = \$20.3$$ Opportunities → investing today/waiting and investing a year or two later → call options → have the right but not obligation to buy the stock before expiration date | | DCF | Real Options | | |---|---|--|--| | • | Static (fixed conditions) | Dynamic (changing conditions) | | | • | Deterministic (uses a single forecast or limited treatment of uncertainty) | Probabilistic (more complete consideration of uncertainty) | | | • | Inflexible: ignores options (rely on single business case that ignores the flexibility) | Flexible: captures options (incorpo
business plan that captures flexibil | | # Idea: Pay for Information Hire a marketing firm conduct a survey to determine if Brisbane = Byron Bay or Townsville? Assume that the research takes one year to complete: medium demand • $$PV_{Bryon\,Bay,1} = -100 + 22 * \left[\frac{1 - (1 + 10.5\%)^{-10}}{10.5\%} \right] = $32.3$$ • $$PV_{Townsvile,1} = -100 + 12 * \left[\frac{1 - (1 + 10.5\%)^{-10}}{10.5\%} \right] = -\$27.8$$ • $$NPV_0 = \frac{0.8*\$32.3+0.2*0}{(1+2.1\%)^1} = \$25.3$$ How much are willing to pay for information: $$NPV_{with\ info} - NPV_{without\ info} = \$25.3 - \$20.3 = \$5K$$ Assuming that market is like Bryon Bay and that the lease expires in 10 \circ Almost all assets pay dividends (CF) \rightarrow we may want to exercise real options sooner rather than later $$0 NPV_{Bryon\,Bay,1} = -100 + 22 * \left[\frac{1 - (1 + 10.5\%)^{-9}}{10.5\%} \right] = $24.2$$ - By delaying a year → give up one year CF: $NPV_{Bryon\ Bay,0} = \frac{0.8*\$24.2+0.2*0}{(1+2.1\%)^1} = \$19 < \$20.3 < \25.3 - Uncertainties around research # Lecture 7 Forecasting Free Cash Flows ## Free Cash Flow Definitions | Free cash flow to firm | Free cash flow to equity | |---------------------------------|---------------------------------| | Sales | Sales | | - Costs (operating costs) | - Costs (operating costs) | | = Gross profit | = Gross profit | | - Depreciation and Amortization | - Depreciation and Amortization | | = EBIT | = EBIT | | + Depreciation and Amortization | + Depreciation and Amortization | | - Capital expenditure | - Capital expenditure | | - Change in working capital | - Change in working capital | | - Increase in other assets | - Increase in other assets | | - Decrease in other liabilities | - Decrease in other liabilities | | = Free cash flow of firm | = Free cash flow of firm | | | - Interest expenses | | | - Preferred dividends | | | - Principal repayments | | | + Proceeds with new debt issues | | | = Free cash flow to equity | | Claimholder | CF to claimholder | Discount rate | |------------------------|---|----------------------------------| | Equity holders | CF = SH distribution — change in additional paid in capital | Cost of equity | | Debtholders | CF = interest expenses + principal repayments – new debt issues | Cost of debt | | Preferred stockholders | CF = preferred dividends | Cost of preferred stocks | | Total | CF = FCF to equity + interest expenses + principal repayments – new debt issues + preferred dividends | Weighted average cost of capital | #### **Incremental Earnings** #### Sales - COGS other than depreciation - Depreciation - = EBIT - Income tax - = Unlevered Net Income - + Depreciation - CAPEX - Increase in NWC - = FCF # The Effect of Dilution at Maturity - Stock dilution → value of conversion option < value of standard option on the stock - To convert bonds to stock $\rightarrow V_{firm}$ is high enough for convertible bondholders - Price of option without conversion (P_{WOC}): $$P_{WOC} = \frac{V_{firm} - D}{N_{WOC}}$$ - D = debt payment at maturity (FV+interest) - N_{WOC} = no. of shares into which convertible bonds convert - Bondholders will convert when they receive by converting > by holding debt: $$\begin{array}{l} \rightarrow P_{AC} * N_C > D \\ \rightarrow P_{AC} > \frac{D}{N_C} \end{array}$$ - P_{AC} should fall due to the dilution that occurs - Consider and all equity firm with a stock price of \$50 - N of shares outstanding = 1M - The firm issues 7,500 zero-coupon convertible bonds, face value of \$1,000. The bond has a conversion ratio of 13.33 Conversion Price = 1,000/13.33 = \$75 - When is it convenient to convert as a function of firm value? - The percentage of shares the convertible BH would get by converting: $$\frac{N_C}{N_C + N_{WOC}} = \frac{7,500 * 13.33}{7,500 * 13.33 + 1m} = 9.09\% \text{ of the firm}$$ o They will convert if 9.09% of the firm > value of their bonds: $$9.09\% * V_{firm} > 7,500 * 1,000$$ $V_{firm} > $82.5m$ Suppose the value of the firm is \$90M and the bondholders have not converted. - Price without conversion (P_{WOC}) is: $\frac{\$90m-7,500*\$1,000}{1m} = \$82.50/share$ - Price after conversion (P_{AC}) is: $\frac{\$90m}{7,500*13.33+1m} = \$81.82/share$ - Dilution → difference between \$82.5 and \$81.82 - Convertible bondholders will get $\frac{7,500*13.33}{7,500*13.33+1m} = 9.1\%$ of all increases in V_{firm} above \$82.5m