GEN2052 Notes

Lectures 1 - 10: Genomics

Lecture 1: DNA and RNA Analysis

Introduction

- Uses in vitro molecular techniques to isolate fragments of DNA via recombinant DNA technology
- Cloning is used to make multiple copies of a DNA fragments via bacterial vectors

Plasmid Elements

- Antibiotic Resistance Gene
 - Allows selection for bacteria which contain the plasmid
- MCS (Multiple Cloning Site)
 - Site with many restriction enzyme sites to insert DNA fragments
- Origin of Replication
 - <u>F1 ori</u>: Single strand replication, incorporation into phage
 - <u>pUC ori</u>: High copy number bacterial plasmid origin of replication
- LacZ (encodes ß-galactosidase)
 - Allows selections of plasmids containing an insert

Types of Vectors

- Plasmid
 - Inserts up to 20kb
- Cosmid
 - Inserts up to 50kb
- Bacterial Artificial Chromosome (BAC)
 - Inserts up to 300kb
- Yeast Artificial Chromosome (YAC)
 - Inserts up to 1.5Mb

Cloning Genomic DNA

- Isolate genomic DNA (remove protein content)
- Break DNA into fragments to clone (sonication/restriction endonucleases)
 - Sonication: High pitched sound that breaks DNA
 - <u>Endonucleases</u>: Cleaves DNA at specific target sequences
- 3. Bacterial transformation via electroporation or heat shock
 - <u>Electroporation</u>: High voltage shock causes holes in bacterial membrane
 - Heat Shock: Bacteria take up Cl⁻ and water and create holes in membrane, moved from ice to 42° to ice to allow for entry of DNA
- 4. Selection of vectors with inserts
 - Only bacteria containing the vector will be able to grow on antibiotic plates
 - Stimulate lacZ gene via IPTG (lactose analogue)
 - X-Gal is added which is colourless but when cleaved by ßgalactosidase produces a blue product

Cloning Complementary DNA (cDNA) (RNA)

- 1. Generated from an RNA sample
- 2. Reverse transcriptase (enzyme used by retroviruses)
- 3. Must use DNA ligase when blunt ends form (or linker sequences)

DNA Libraries (PCR)

- Cloning of random genomic or cDNA
- Uses PCR for targeted amplification of DNA fragment
- Each round of PCR doubles copies of targeted DNA
- Bacterial cultures are less error prone than PCR

PCR Cycle 1. Denature DNA 96°C5' - ATGTGCGACGAAGACGAGAC 3' - TACACGCTGCTTCTCCTCTG AGGTGGCGTTTACGAAGACT-5 1. Anneal primers 55°C5' - ATGTGCGACGAAGACGAGAC 5' - ATGTGCGACGAAGACGAGAC 3' - TACACGCTGCTTCTCGTCTCTG AGGTGGCGTTTACGAAGACT-5 2. Extension of DNA Taq polymerase 72°C 3' - ATGTGCGACGAGAAGACGAGAC 3' - TACACGCTGCTTCTCCTCTG AGGTGGCGTTTACGAAGACT-5' **TCCACCGCAAATCCTTCTGA-3' AGGTGGCGTTTACGAAGACT-5' **TCCACCGCAAATCCTTCTGA-3' AGGTGGCGTTTACGAAGACT-5' **TCCACCGCAAATCCTTCTGA-3' **TCCACCGCAAATCCTTCTGA-3'

Determining Orientation

- Compare known restriction map to restriction enzymes see where cuts are
- This can then be visualised via electrophoresis to see where the bands are cut
- Can use directional cloning (2 R.E)

Sequencing

- Addition of dideoxy sequences (nucleotides that lack an OH group)
- This means once it is added to a chain of DNA no other nucleotides can be added onto the chain
- Used to determine what the last nucleotide was
- Now uses fluorescence markers to tag different coloured bases

Lecture 2: DNA and RNA Analysis II

A-T Cloning

- Many DNA polymerases produce products with a 3' adenine overhang
- Create vectors with 3' thymidine overhang
- Ligate and use restriction mapping to determine orientation

Colony Hybridisation

- 1. Grow plates of bacteria containing library
- 2. DNA is transferred to a membrane (cross-linked)
- 3. Generate a labelled probe for sequence of interest (radiolabelled or bioluminescent)
- 4. Determine location of probe on membrane
- 5. Identify bacterial colony and pick form plate

Probes and Screening

- Fragment of gene of interest
- Homologue form another species
- Closely related gene
- Short DNA oligo designed protein sequence
- Synthesis probe by PCR with radiolabelled dNTPs

Libraries

- Gridded Libraries
 - DNA from library is extracted and <u>plated on a grid</u> in a known pattern
 - Can screen filters and then order identified clones
- Pooled Libraries
 - PCR in all wells into rows and columns (and plates)

Subclones

- Clone fragments of larger DNA clone
- Often unknown DNA sequences due to segmentation

