WEEK 2 - THE ROMANS, CONSTRUCTION MACHINE & DESIGN AUTOMATION

WHAT IS A MACHINE?

- → Any device that helps you do work
- → Use machine to:
 - Transform energy Generator
 - Transfer energy/Increase the magnitude of force Hammer
 - Change direction of force Crane
 - Increase the speed/distance of a force Bicycle

WHAT IS A SIMPLE MACHINE?

- → The simplest mechanisms that use mechanical advantage to multiply force
- → 6 principles:
 - Lever
 - Inclined plane
 - Block and tackle
 - Wheel and axle
 - Screw
 - Gear

1) LEVERS

- → 3 main classes
- → Elements:
 - Weight/resistance, fulcrum, effort
- → Mechanical advantage = Weight ÷ Effort

→ FIRST CLASS

- Pliers
- Positive MA
- Effort < Motion

→ SECOND CLASS

- Nutcracker
- Positive MA
- Effort \leq Motion

→ THIRD CLASS

- Tongs
- Fractional MA (Disadvantage)
- Effort > Motion

^{*}Complex machines are combinations of 2 or more simple machines

2) INCLINE PLANE

- → A flat surface that is higher on one end
- → Allows you to overcome a longer resistance, by applying a small force through a longer distance when raising the load
- → Mechanical advantage = Length of slope ÷ Height of inclined plane
- → The wedge (knife) is a special application of 2 inclined planes set base to base:
 - Mechanical advantage of WEDGE = Depth of penetration ÷ Distance between wedged surface

3) BLOCK AND TACKLE

- → A block/pulley is a grooved wheel that turns by the action of a rope in the groove
- → Blocks are either fixed or movable
- → Fixed pulley: No mechanical advantage
- → Movable pulley: Positive mechanical advantage
- → Block and tackle is a system of 2 or more pulleys with a rope or cable threaded between them, usually used to lift/pull heavy loads
- → Mechanical advantage = Number if parts of the rope that act on the load (Count the number of parts of rope going to and from the movable blocks)

4) WHEEL AND AXLE

- → A wheel attached to an axle so that these two parts rotate together in which a force is transferred from one to another
- → A hinge supports the rotation of the axle
- → Mechanical advantage = Ratio of radius of the wheel to radius of axle

5) SCREW

- → Inclined plane wound around a central cylinder
- → Converts rotational motion into linear motion
- → Mechanical advantage = Circumference of screw ÷ Pitch of screw
- → Highly used in wall systems, skyscrapers and glass facades (Cables used to stabilise)

6) GEAR

- → Rotating machine part having cut teeth, or cogs, which mesh with another toothed part to transmit torque
- → Can change direction of force, vary rotational speed and produce a mechanical advantage

CONSTRUCTION MACHINE

- → Innovation in construction
- → Construction of shells and gridshells (Dante Bini's patent)
- → Principle of hyperbolic parabloids

INNOVATION IN CONSTRUCTION

→ Innovation is usually in design, not construction

- $\rightarrow \ \text{Simplifying construction}$
- → Reduce cost
- $\, \to \, \text{Reduce environmental impact} \,$

CONSTRUCTION OF SHELLS AND GRIDSHELLS

ightarrow Bini's patent

DESIGN AUTOMATION

- $\ \ \, \rightarrow \, \, \text{Additive/Subtractive manufacturing techniques}$
- $\rightarrow \ \text{Parametric design}$

WEEK 3 - TIMBER

WOOD PROPERTIES

- → Timber for construction purposes are obtained by converting fallen tree trunks into geometrically elements
- → Inner part of log (heartwood) is most appropriate for timber
- → Outer part (sapwood) is too moist to be converted into timber

- ightarrow Hollow cellular microscopic structure of wood accounts for the light weight of timber
- → Grained surface of trunks created by different seasonal growth rates

TIMBER RESOURCES IN AUSTRALIA

- → Managed native forests (hardwoods)
 - <10% available + suitable for harvesting, only 1% harvested
- → Plantations (soft and hardwoods)
 - Normally only of 1 species
- → Imports
- → Timber takes time and space to grow to the size of millable logs:
 - Native forests: 60 more than 100 years
 - Plantations: 30 50 years

SOFTWOOD AND HARDWOOD

SOFTWOOD	HARDWOOD
→ Structural purposes	→ Flooring and cladding
→ Less dense	→ Denser (Except for balsa)
→ One type of cell and appear more regular	→ Pores surrounded by support fibres
→ Coniferous	→ Broad-leaved
→ Eg. Pine	→ Eg. Oak

MANUFACTURING

- → Process: GAHTTM (Get A Husband To Travel More)
 - Growth

- Assessment
- Harvesting
- Trimming
- Transport
- Milling

→ Timber conversion

- Sawing of logs into boards at timber mill
- Affects strength, durability and quality of the sawn properties
- Turning the log as sawing proceeds will result in cuts made in different planes and shapes are optimised to obtain timber with better strength while wastage is minimised
- Back-sawing VS Quarter-sawing

BACK-SAWING	QUARTER-SAWING
→ Structural purposes	→ Cladding, flooring
→ Highly flexible method of construction	→ Has aesthetic qualities, showcases grains
→ Higher recovery from log, less/no wastage	→ Many decorative hardwood reveal their rich
→ Simpler and faster to produce	figure with the interlocking grains only by
→ Separation of sapwood and knotty areas is	quarter-sawing
often more effective	→ Flooring and joinery timber often quarter-
→ Rapid seasoning with less shrinkage	sawn to produce boards with 'edge-grain' that
→ Some softwoods reveal figure only with back	wears better
saw	→ Dries more slowly but less prone to develop
ightarrow Less prone to splitting when nails are driven in	defects in season (Eg. Cupping and warping)

→ Timber grains

→ Seasoning

• Freshly cut timber has a high water content