Completely randomised design (CRD)

Model	$y_{ij} = \mu_i + e_{ij}$	
	i=1,2,t, j=1,2,r	
Assumptions	Data are independent (study)	
	design)	
	 The residuals are normally 	
	distributed (check histogram,	
	normal probability plot).	
	 The residuals have equal 	
	variances (boxplots, test of equal	
	variances)	
Estimated	nated $\frac{t}{t} \frac{r_i}{r_i}$	
parameters	$SST = \sum_{i=1}^{t} \sum_{j=1}^{r_i} (\overline{y}_{i.} - \overline{y}_{})$	
	$\overline{i=1}$ $\overline{j=1}$	
	$SSE_f = \sum_{i=1}^{t} \sum_{j=1}^{r} (y_{ij} - \hat{\mu}_i)^2 = \sum_{i=1}^{t} \sum_{j=1}^{r} (y_{ij} - \overline{y}_{i.})^2$	
Standard	$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \overline{y})^2} \text{S.E.}(\overline{y}_{i\cdot}) = \sqrt{s^2/r_{i\cdot}}$	
error	$s - \sqrt{\frac{1}{n-1}} \sum_{i=1}^{n-1} (y_i - y_i) S.E.(y_i) = \sqrt{s^2/r_i}$	
	$s = \sqrt{MSE}$	
95% CI	$\overline{y}_{i.} \pm t_{N-t}^{\alpha/2} \cdot \hat{S}E(\overline{y}_{i.}) = \overline{y}_{i.} \pm t_{N-t}^{\alpha/2} \cdot \sqrt{MSE/r_i}$	

Contrasts

$$\overline{C = \sum_{i=1}^{t} k_i \mu_i, \sum_{i}^{t} k_i = 0}$$

• k_i indicates the coefficient of the contrast.

$$c = \sum_{i=1}^{t} k_i \overline{y}_i. \text{ Var } (c) = \sigma^2 \sum_{i} \frac{k_i^2}{r_i}$$
$$t_{crit} = \frac{c - c}{\sqrt{MSE \times \sum_{i} \frac{k_i^2}{r_i}}}, \text{ v= N-t (df of SSE)}$$

Sum of squares:
$$SSC = \frac{c^2}{\sum_{i} \frac{k_i^2}{r_i}}$$

$$\sum SSC = Treatment SS$$
Orthogonal contrast

Orthogonal contrast

Contrasts that convey independent information

If
$$C_1 = k_1 \mu_1 + k_2 \mu_2 + \dots + k_t \mu_t$$

 $C_2 = l_1 \mu_1 + l_2 \mu_2 + \dots + l_t \mu_t$
C & D are orthogonal if

$$\sum_{i=1}^{t} \frac{k_i l_i}{r_{i}} = 0$$
You can drop the *i* for equal groups.

Complete set of orthogonal contrasts

- t-1 mutually orthogonal contrast
- Each pair of contrasts is orthogonal

Multiple comparisons

- <u>Bonferroni</u>
- suitable for ad hoc comparisons
- small number of tests

 $\begin{array}{l} \alpha_c=overall\ significance\ level\\ \alpha_e=individual=\frac{\alpha_c}{k},\ k=t(t-1)\!\!=\!\text{no. of comparisons} \end{array}$

$$\overline{y}_{i} - \overline{y}_{j} \pm t_{v}^{1-\alpha/2} \sqrt{MSE \cdot \left(\frac{1}{r_{i}} + \frac{1}{r_{j}}\right)}$$

$$s_{pooled}^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

All copyrights retained by author

- Tukey
- suitable for balanced study
- less conservative

$$H_0$$
: $\mu_1 = \mu_2 = \dots = \mu_k$
we reject H_0 if

$$\frac{\omega}{\sqrt{\text{MSE/r}}} = \frac{\underset{\text{i=1,\dots,k}}{\max}\left(\overline{\mathbf{Y}}_{\text{i.}}\right) - \underset{\text{i=1,\dots,k}}{\min}\left(\overline{\mathbf{Y}}_{\text{i.}}\right)}{\sqrt{\text{MSE/r}}} > q_{\alpha,k,\nu}$$

k=t treatment, v = df of SSE

To find individual differences between means

- Find threshold value $q_{\alpha,k,v} \times \sqrt{MSE/r}$
- If $|\overline{y_L} \overline{y_L}|$ exceeds threshold value, then reject H₀
- 3. Scheffe
- suitable for post hoc comparisons
- many tests
- can only conduct two-tailed tests as we are using F-

$$S = \sqrt{(t-1)F_{\alpha,t-1,N-t}}$$

$$s_c = \sqrt{MSE \times \sum_i \frac{k_i^2}{r_i}}$$

If data is non-normal

- Transformation: log or sqrt
- Non-parametric test (Kruskal-Wallis) Test the different between treatment medians Assumption: all groups have similar shape

If variances are not equal

Use Levene's test (F distribution) or Barlett's test (chi-square distribution) to see if variances are equal

Randomised complete block design (RBD)

• Suitable	e when we have homogenous groups	
Model	$y_{ij} = \mu + \tau_i + p_j + e_{ij}$ i=1,2,t, j=1,2,r	
Assumption	• $e_{ii} \sim NID(0, \sigma^2)$ indepently	
Parameter constraint	$\sum_{i=1}^{r} \tau_i = \sum_{j=1}^{r} \rho_j = 0.$	
Variance	$s_2^2 = \frac{SS_{Block} + r(t-1) \cdot MS_{Error}}{rt - 1}$	
Relative efficiency	$RE = \frac{(f_1+1)(f_2+3)s_2^2}{(f_1+3)(f_2+1)s_1^2} = \frac{CRD}{RBD}$ If RE=2 => RBD is twice efficient. CRD need a sample size 2 times greater to achieve the same precision.	

If assumptions fail:

- Transformation
- Non-parametric (Friedman's test) Assumptions:
 - Each block contains t random variables or ranking
 - The blocks are independent
 - Within each block, observations can be arranged in increasing order (not too many ties)

H₀: Each ranking of the random variables within a block is equally likely

H₁: At least one treatment has larger observed values.

$$\begin{split} R(y_{ij}) \colon rank \ from \ 1 \ to \ t \ assigned \ to \ y_{ij} \ within \ block \ j \\ R_{_i} = \sum_{}^{r} R(y_{_{ij}}) \qquad i = 1, 2, \ldots, t \end{split}$$

Friedman test statistics S (chi-square distribution) $= \frac{12}{rt(t+1)} \sum_{i=1}^{t} R_i^2 - 3r(t+1)$

Factorial experiment

- Examine multiple factors at the same time
- Examine interaction first
 - ⇒ (1) Significant: Need to carry out multiple comparisons on the levels of one factor at each level of the other factor

(2) Insignificant: Remove interaction term.

(2) msignificant. Remove interaction term.					
Model	,		,	$+ (\alpha \beta)_{ij} + \dots b, k=1, 2$., .
	1-	-1,2,a	$, j^{-1}, 2,$	0, K-1, 2	۷,۱
Assumptions	• $e_{ij} \sim NID(0, \sigma^2)$ indepently				
	•	$\Sigma_{i}\alpha_{i}$	$=0, \Sigma_{j}\beta$	j=0.	
	•	$\sum_{i=1}^{a} (\alpha \beta)_{i}$	j = 0 for a	Il j, $\sum_{j=1}^{b} (\alpha \beta)_{ij} = 0$) for all i.
Main effect	Main e	ffect of	A		
	= ½ {[a ₂ b ₂ + a ₂ b	$\begin{bmatrix} a_1 b_2 + \end{bmatrix}$	a ₁ b ₁]}	
	treat.'s w	ith A at level 2	treat.'s	with A at level 1	
Two-factor	$(a_2b_2 - a_2)$	$(a_1b_2) - (a_2b_2)$	$a_2b_1 - a_1b$	1)	
interaction effect					
Estimated	Source	SS	df	MS	F
parameters	Factor A	SS_A	a-1	$SS_A/(a-1)$	MS _A /EMS
	Factor B	SS_B	b-1	$SS_B/(b-1)$	MS _B /EMS
	Inter ⁿ AB	SS_{AB}	(a-1)(b-1)	SS _{AB} /(a-1)(b-1)	$MS_{AB}\!/EMS$
	Error	ESS	ab(r-1)	ESS/ab(r-1)	
	Total	Total SS	abr-1		

$$SS_{Total} = \sum_{i} \sum_{j} \sum_{k} (y_{ijk} - \bar{y}_{...})^{2}$$

$$SS_{A} = br \sum_{i} (\bar{y}_{i..} - \bar{y}_{...})^{2}$$

$$SS_{B} = ar \sum_{j} (\bar{y}_{.j.} - \bar{y}_{...})^{2}$$

$$SS_{AB} = r \sum_{i} \sum_{j} (\bar{y}_{ij.} - \bar{y}_{i..} - \bar{y}_{.j.} + \bar{y}_{...})^{2}$$

$$SS_{Error} = \sum_{i} \sum_{j} \sum_{k} (y_{ijk} - \bar{y}_{ij.})^{2}$$

NOTE: $Var(nX)=n^2Var(X)$

Var(X+Y) = Var(X) + Var(Y)

2ⁿ Factorial Design

$$Var(\hat{A}) = \frac{\sigma^2}{r^{2n-2}}$$
 SST= $\frac{Y(.)^2}{2^n r}$

Vates' Algorithm

	Col 1	Col 2	Col $3 = n$
$\sum(1)$	a+1	ab+b+a+1	T
$\sum a$	ab + b	ac + c + abc + bc	Y(A)
$\sum b$	ac + c	a-1+ab-b	Y(B)
$\sum ab$	abc + bc	ac - c + abc - bc	Y(AB)
$\sum c$	a – 1	ab+b-a-1	Y(C)
∑ ac	ab — b	abc + bc - ac - c	Y(AC)
$\sum bc$	ac — c	ab-b-a+1	Y(BC)
$\sum abc$	abc — bc	abc - bc - ac + c	Y(ABC)

<u>Partial confounding</u>: Confounding different effects in each rep <u>Fractional replication</u>: (1) find identity relation, (2) find the effect subgroup, (3) Decide fractional replicate and its aliases

Random effects model

Treatments which are drawn at random from a population of treatments

$y_{ij} = \mu + \alpha_i + e_{ij}$ i=1,2,t, j=1,2,r
• $e_{ij} \sim NID(0, \sigma^2)$ indepently
• $\alpha_i \sim NID(0, \sigma^2)$ indepently
H_0 : $\sigma_a^2 = 0$ (no treatment effects) H_1 : $\sigma_a^2 > 0$ (there is treatment difference)
$MSA = \hat{\sigma}_e^2 + r\hat{\sigma}_a^2$
$MSW = \hat{\sigma}_e^2$
The variance among X accounts for x% of
the variation and the variance within X
accounts for the other (1-x)%.
A $100(1-\alpha)\%$ CI for σ_e^2 is given by
$\Pr\left\{\frac{SSW}{A} < \sigma_e^2 < \frac{SSW}{B}\right\} = 1 - \alpha$
where
$A = \chi^2_{N-t,\alpha/2}$ (upper $\alpha/2$ point of χ^2_{N-t}) and
$B = \chi^2_{N-t, 1-\alpha/2}$ (lower $\alpha/2$ point of χ^2_{N-t} ; $B < A$)
are values that separate the upper tail area (higher
side) of $\alpha/2$ and $(1 - \alpha/2)$, respectively.
An approximate $100(1-2\alpha)\%$ CI for σ_a^2 is given by
$\Pr\left\{\frac{SSA(1-F_u/F_0)}{rC} < \sigma_u^2 < \frac{SSA(1-F_l/F_0)}{rD}\right\} \approx 1 - 2\alpha$
where
$C = \chi_{t-1,\alpha/2}^2 \text{ (upper tail)}$ $D = \alpha^2 \qquad \text{(augus tails } D < C)$
$D = \chi^2_{t-1,1-\omega/2} \text{ (lower tail; D < C)}$ $F_0 = MSA/MSW$
$F = F^{\alpha/2}$ (upper)
$F_{l} = F_{l-1,N-t}^{1-a/2} \text{ (lower; } F_{l} < F_{u} \text{)}$ $\rho_{l} = \frac{\sigma_{a}^{2}}{\sigma_{a}^{2} + \sigma_{e}^{2}}$
σ_a^2
$ \rho_I = \frac{1}{\sigma_a^2 + \sigma_e^2} $
ρ _t is a measure of how similar (or dissimilar) units between groups are, compared with similarity
within groups.
It is the proportion of variability attributable to
groups. In the extreme case of no difference between groups, ρ_i would be zero.

The analysis of covariance

- Examine one factor, but also take into account extraneous (continuous) variables
- We can only measure covariate during the experiment
- The influence of covariate on the response is unknown

unknow	**		
Model	$y_{ij} = \mu + \tau_i + \beta (x_{ij} - \overline{x}_{}) + e_{ij}$ $y_{ij:}(X) \text{ for jth subject in ith treatment}$		
	μ: overall mean (X)		
	τ_i : effect of the ith treatment on (X)		
	β : coefficient for the linear regression of y_{ij} on		
	X _{ij}		
	x _{ij} : covariate for jth subject in ith treatment		
	\overline{x} : overall covariate mean		
Assumption	• $e_{ij} \sim NID(0, \sigma^2)$ indepently		
Parameter constraint	$\sum_{i=1}^{t} \tau_i = 0$		
	 Common slope β (not significant) 		

Adjusted mean of Y	$\overline{y_{l_{adJ}}} = \overline{y_{l\cdot}} + \hat{\beta}(\overline{x_{\cdot}} - \overline{x_{l\cdot}})$

Survey design

Sampling frame: a list of sampling units

Sampling unit: non-overlapping units for sampling

Unit: A group of elements

Element: an object on which measures are taken

NOTE: unit can be element.

Probability concepts

$$E(Y) = \mu$$
$$= \sum_{j=1}^{k} y_j p_j$$

$$Var(Y) = \sum_{i=1}^{k} (y_i - \mu)^2 p_i = E(Y^2) - [E(Y)]^2$$

Simple random sampling

- Sampling is done without replacement.
- Simpliest, appropriate with no prior information.

$$SE(\overline{y}) = \sqrt{Var(\overline{y})} = \sigma \sqrt{\frac{(1-f)}{n}}$$

$$\sigma^{2} = \frac{1}{N-1} \sum_{i=1}^{L} (N_{i} - 1)\sigma_{i}^{2} + \frac{1}{N-1} \sum_{i=1}^{L} N_{i} (\mu_{i} - \mu)^{2}$$

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i}$$

$$Var(\overline{y}) = (1-f) \frac{\sigma^{2}}{n}$$

$$Y_{T} = N\overline{y}; Var(Y_{T}) = Var(N\overline{y}) = N^{2}(1-f) \frac{\sigma^{2}}{n}$$

Use sample proportion $\,\hat{p}\,$ to estimate population proportion p with

$$\left(Var(\hat{p}) = \frac{N}{N-1} \cdot pq \cdot \frac{(1-f)}{n} \right)$$

$$\cong (1-f) \cdot \frac{pq}{n} \quad \text{since } \frac{N}{N-1} \cong 1 \text{ for large } N$$

Where q = 1 - p.

Sampling size

$$n \ge N \left\{ 1 + N \left(\frac{B}{z_{\alpha/2} \sigma} \right)^2 \right\}^{-1}$$

To estimate pop. total within D of true value

$$n \geq N \Biggl\{ 1 + N^{-l} \Biggl(\frac{D}{z_{\alpha/2} \sigma} \Biggr)^2 \Biggr\}^{-l}$$

To estimate pop. proportion with a specified margin of error B at significance level α

Ignoring the fpc and taking (N/(N-1))=1, we get

$$n \ge \frac{p(1-p) z_{\alpha/2}^2}{B^2}$$

Not ignoring the fpc: After some manipulation

$$n \ge N \left[1 + \frac{N-1}{p(1-p)} \left(\frac{B}{z_{\alpha/2}} \right)^2 \right]^{-1}$$

If no p is given, use p=0.5 (conversative + large sample size)

Stratified random sampling

- Use to reduce variance
- Obtain best results when within-stratum differences is small, and large differences between stratum means.

$$\begin{split} & \overline{y}_{ST} = \sum_{i}^{L} \frac{N_{i}}{N} \overline{y}_{i} \\ & \text{with } Var(\overline{y}_{ST}) = Var\left(\sum_{i}^{L} \frac{N_{i}}{N} \overline{y}_{i}\right) = Var\left(\sum_{i=1}^{L} W_{i} \overline{y}_{i}\right) = \sum_{i=1}^{L} W_{i}^{2} Var(\overline{y}_{i}) \\ & = \sum_{i=1}^{L} W_{i}^{2} (1 - f_{i}) \frac{\sigma_{i}^{2}}{n_{i}}; \end{split}$$

$$\begin{split} y_{\text{T,ST}} &= N \cdot \overline{y}_{\text{ST}} = \sum_{i=l}^L N_i \overline{y}_i \\ \text{with } Var(y_{\text{T,ST}}) &= Var\big(N \cdot \overline{y}_{\text{ST}}\big) = N^2 \cdot Var\big(\overline{y}_{\text{ST}}\big) \\ &= N^2 \cdot \sum_{i=l}^L W_i^2 \big(l - f_i\big) \frac{\sigma_i^2}{n_i} = \sum_{i=l}^L N_i^2 \big(l - f_i\big) \frac{\sigma_i^2}{n_i} \\ Var(y_{\text{T,ST}}) &= N^2 Var(\overline{y}_{\text{ST}}) = \sum_{i=l}^L N_i^2 \big(l - f_i\big) \cdot \frac{s_i^2}{n_i}; \\ \hat{p}_{\text{ST}} &= \sum_{i=l}^L \bigg(\frac{N_i}{N}\bigg) \cdot \hat{p}_i \\ Var(\hat{p}_{\text{ST}}) &= \sum_{i=l}^L \bigg(\frac{N_i}{N}\bigg)^2 \cdot Var(\hat{p}_i) \\ &= \sum_{i=l}^L \bigg(\frac{N_i}{N}\bigg)^2 \cdot (1 - f_i\big) \cdot \bigg(\frac{\hat{p}_i \hat{q}_i}{n_i - 1}\bigg) \end{split}$$

Sample size

The sample size for stratum i according to proportional allocation

$$n_i = \frac{n \cdot N_i}{N} = f \cdot N_i.$$

The optimal sample size in stratum i is,

$$n_{i} = n \cdot \left(\frac{\frac{N_{i}\sigma_{i}}{\sqrt{c_{i}}}}{\sum_{j=1}^{L} \frac{N_{j}\sigma_{j}}{\sqrt{c_{j}}}} \right)$$

When sampling costs over the strata are equal,

i.e.
$$c_1 = c_2 = \dots = c_I$$
, this reduces to

$$n_i = n \cdot \frac{N_i \sigma_i}{\sum_{i=1}^{L} N_j \sigma_j}$$

This is known as Neyman allocation.

Design effect

 $deff = \frac{Var(\text{estimate under current sampling plan})}{Var(\text{estimate under SRS with same sample size})}$

If deff <<1, then stratified random sampling is better than SRS.

 \overline{y}_{svs} = mean of a systematic sample, with

$$\begin{aligned} Var(\overline{y}_{sys}) &= \frac{N-1}{N}\sigma^2 - \frac{k(m-1)}{N}S_W^2 \\ where \quad \sigma &= population \ SD, \\ S_W^2 &= \frac{1}{k(m-1)}\sum_{i=1}^k \sum_{j=1}^m (u_{ij} - \overline{u}_{i.})^2 \ and \\ \overline{u}_{i.} &= \frac{1}{m}\sum_{j=1}^m u_{ij} \end{aligned}$$

Cluster sampling

- Easy to implement
- Clusters are generally geographical entites
- Useful when there is a large within-cluster variation but small between-cluster variation.
- a) When all cluster sizes are equal to L:

$$\begin{split} &\overline{y}_{\mathrm{CL}} = \frac{1}{n} \sum_{i}^{L} \overline{y}_{i} = \frac{1}{n} \sum_{i=1}^{L} \left(\frac{1}{L} \sum_{j=1}^{L} y_{ij} \right) \\ & \text{with } \hat{V}ar(\overline{y}_{\mathrm{CL}}) = (1 - \frac{n}{N}) \frac{s_{t}^{2}}{nM^{2}} \\ & \text{where } s_{t}^{2} = \frac{1}{n-1} \sum_{i=1}^{L} \left(\sum_{j=1}^{L} y_{ij} - \frac{\frac{N}{n} \sum_{i=1}^{L} \sum_{j=1}^{L} y_{ij}}{N} \right) \end{split}$$

b) When cluster sizes are not all equal, we estimate the mean through ratio:

$$\overline{y}_{CL} = \frac{\sum_{i=1}^{n} y_i}{\sum_{i=1}^{n} m_i}, \text{ with } \widehat{Var}(\overline{y}_{CL}) = \left(\frac{N-n}{Nn\overline{M}^2}\right) s_r^2$$

$$\text{where } s_r^2 = \frac{\sum_{i=1}^{n} (y_i - \overline{y}_{CL}m_i)^2}{n-1}$$

Systematic sampling

- Simple, save time and effort
- Useful when we do not have a list of population
- If the population is period, DO NOT USE.

Method A: When N/k is an integer, choose a unit at random from the first kth unit. Take every kth unit from the starting unit.

<u>Method B</u>: Choose a unit at random from the population. Starting point depends on remainder.

When N/k is not an integer, use Method B to ensure an unbiased estimator of μ

$$r=\frac{\overline{y}}{\overline{x}}$$
 , and

 $E(r) \cong \frac{\mu_y}{\mu_x}$ (approximation is good for large samples)

$$Var(r) \cong \frac{1-f}{n} \cdot \frac{1}{\mu_x^2} \cdot \sum_{i=1}^{N} \frac{\left(Y_i - RX_i\right)^2}{N-1}$$

We estimate

$$\sum_{i=1}^{N} \frac{(Y_i - RX_i)^2}{N - 1} \quad \text{by } \sum_{i=1}^{n} \frac{(y_i - rx_i)^2}{n - 1}$$

and μ_x^2 by \bar{x}^2 , giving

$$\begin{split} \widehat{Var}(r) &= \frac{1-f}{n} \cdot \frac{1}{\overline{x}^2} \cdot \sum_{i=1}^n \frac{(y_i - rx_i)^2}{n-1} \\ &= \frac{1-f}{n} \cdot \frac{1}{\overline{x}^2} \cdot s_e^2 \end{split}$$

$$\hat{\tau}_{y} = Y_{T,r} = \tau_{x} \cdot \left(\frac{\overline{y}}{\overline{x}}\right)$$
with $Var(\hat{\tau}_{y}) = Var(\tau_{x} \cdot \left(\frac{\overline{y}}{\overline{x}}\right))$

$$= \tau_{x}^{2} Var(r)$$

$$\begin{split} V \hat{a} r(Y_{Tr}) &= \tau_x^2 V \hat{a} r(r) \\ &= (N \mu_x)^2 \frac{1-f}{n} \frac{1}{\overline{x}^2} \frac{1}{n-1} \sum_{i=1}^{n} (y_i - r x_i)^2 \\ &\cong \frac{N(N-n)}{n(n-1)} \sum_{i=1}^{n} (y_i^2 - 2 r x_i y_i + r^2 x_i^2) \\ &= \frac{N(N-n)}{n} S_e^2. \end{split}$$

Regression estimator

$$\overline{y}_{LR} = \overline{y} - \hat{\beta}(\overline{x} - \mu_X)$$

$$Var(\overline{y}_{LR}) \approx \frac{1-f}{n} \left[\frac{n-1}{n-2} \right] \left[s_y^2 - \hat{\beta}^2 s_x^2 \right]$$

where

$$s_{y}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \overline{y})^{2} \quad and \quad s_{x}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$\left[\frac{n-1}{n-2} \right] \left[S_{y}^{2} - \hat{\beta}^{2} S_{x}^{2} \right]$$

MSE=