Completely randomised design (CRD)

Model Vij = M + €j
i=1,2,...t,j=1,2,..r
Assumptions e Data are independent (study
design)

e  The residuals are normally
distributed (check histogram,
normal probability plot).

e The residuals have equal
variances (boxplots, test of equal
variances)

Estimated 2

to
parameters SST = Z Z (?i. - V..)
i=l j=1

P 2
SSE =ZZ(J’U‘ _J‘A‘J) =
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Contrasts

C =ik, Xiki=0
e ki indicates the coefficient of the contrast.
_ k?
¢ = Tio kg, Var @) =0 %y
€C __ v=N-t (df of SSE)

torit = >
%
MSExy;-L
L
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Sum of squares: SSC = —

Zir—‘i
Z SSC = Treatment SS

Orthogonal contrast
Contrasts that convey independent information
IfCy = kypy + kopy + -+ ket

Co =l + Lpy + -+ Loy

C & D are orthogonal if

7 )Yuu can drop t;; { ™ y
Vi
Complete set of orthogonal contrasts
e -1 mutually orthogonal contrast

e  Each pair of contrasts is orthogonal

i=l

Multiple comparisons
1. Bonferroni
e suitable for ad hoc comparisons
o small number of tests
a. = overall significance level
a, = individual = % k = t(t — 1)= no. of comparisons
95% CI:

(ny — Dsf + (np — Dsj
nl + le - 2

2 —
Spooled -
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2. Tukey
e suitable for balanced study

e less conservative

Ho:py = pp = =+ =
we reject Hy if

JMSEr  JMSEr

k=t treatment, v = df of SSE
To find individual differences between means

Find threshold value qg s ,, X \/ MSE /1
If |y, — ¥, exceeds threshold value, then reject Ho

Scheffe

suitable for post hoc comparisons

many tests

can only conduct two-tailed tests as we are using F-
values.

S= /(t —DFye1n-t
kf

s.= [MSEx ) -L
i"

Cl:ctS x ¢
If data is non-normal
e Transformation: log or sqrt
e Non-parametric test (Kruskal-Wallis)
Test the different between treatment medians
Assumption: all groups have similar shape
If variances are not equal
e  Use Levene’s test (F distribution) or Barlett’s test
(chi-square distribution) to see if variances are equal

e o o (;o

Randomised complete block design (RBD)
e  Suitable when we have homogenous groups

Model yij: u +Ti+pj+eij
i=1,2,..t,7=1,2,..r
Assumption e ¢;~NID(0,0?)indepently
Parameter t r
constraint Z T, = Z p,=0.
° i=1 7=l
Variance 2= SSpiock +r(t —1) - MSgyror
2 rt—1
Relative RE = Y1tD(a+3)ss_cRD
- . - 2_
efficiency (fi+3)(fz+1)s{ RBD
If RE=2 => RBD is twice efficient. CRD
need a sample size 2 times greater to
achieve the same precision.

If assumptions fail:
e Transformation
e Non-parametric (Friedman’s test)
Assumptions:
- Each block contains t random variables or
ranking
The blocks are independent
Within each block, observations can be arranged
in increasing order (not too many ties)
Ho: Each ranking of the random variables within a
block is equally likely
Hi: At least one treatment has larger observed values.




R(yij): rank from 1 to t assigned to y;; within block j

R, =iR(yu—)

i=1,2,...,t

Frledman test statistics S (chi-square distribution)

rt(t+l)

Factorial experiment

ZR —3r(t+1)

Examine multiple factors at the same time

Examine interaction first

= (1) Significant: Need to carry out multiple
comparisons on the levels of one factor at each
level of the other factor
(2) Insignificant: Remove interaction term.

Model

Yij=nta;te;
=12, 4= 1,2,

Assumption

e ¢;~NID(0,0%)indepently
e a;~NID(0,02)indepently

Hypothesis

Hy: 642 = 0 (no treatment effects)
H;: c4% > 0 (there is treatment difference)

Model

YVijk =
1=1,2,...a,

w+a; + B + (aB)ij + ey
i=1,2,..b,k=1,2,..r

Estimated
parameters

MSA =67 +r6>

MSW =0¢
The variance among X accounts for x% of
the variation and the variance within X
accounts for the other (1-x)%.

Assumptions

e;;~NID(0,0%)indepently

ZiOLi:

0, %80,

a ]
Y(ef); =0 forallj ¥ (af), =0 foralli
i=l j=1

Error

Total

Inter" AB SSap

ESS
Total S5

Main effect Main effect of A

= % {Tab, + ab;]-Tab, +ab,1}

treat.'s wima 2 tr;::wnhl\al level 1

Two-factor (azb2 -a1b2) — (a2bs -aibi)
interaction effect
Estimated Source SS df MS F
parameters Factor A SS, a-1 SSa/(a-1) MSA/EMS

Factor B SSg b-1 SSw/(b-1) MSs/EMS

(a-1)(b-1) SSap/a-1)(b-1) MS,z/EMS
ab(r-1) ESS/ ab(r-1)
abr-1

SSrotal = %i 2 2k (Vijk —

SS, = br 21(3_’; - y)z
p=ary(y,) -

SSap =

r 2@ —

37...)2

5..)"

y1+3’)

_ 2

SSerror = Xi Xj Ek(}’ijk - ¥ij.)
NOTE: Var(nX)=n?Var(X)
Var (X+Y)= Var(X) + Var(Y)
2" Factorial Desiqn

ssT=YY°
2Ny

Col 2
ab+b+tatl
ac + ¢ + abc + be
a—1+ab—»b
ac — ¢ + abc — be
ab+b—a-1
abe + bc—ac—c¢
ab-b—-a+1

Var (A)— o
Yates’ Algorlthm
Col 1
2| e+l
Ma ab+ b
>b ac+c
3~ ab | abc + bc
e a—1
3tac | ab-b
S bc | ac-c
% abc | abc — bc

abe —bc—ac+c

Col3=n
T
Y(A)
Y(B)
Y(AB)
Y(C)
Y(AC)
Y(BC)
Y(ABC)

Partial confounding: Confounding different effects in each rep
Fractional replication: (1) find identity relation, (2) find the

effect subgroup, (3) Decide fractional replicate and its aliases

Random effects model

Treatments which are drawn at random from a
population of treatments
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Cl

A 100(1-a)% CI for c,?is given by

{SSW 2 SSW}
Pri——<o, <T =1-

where

A= x4, . (upper /2 point of x;_)and

B=xr 1 an (lowera/2pointof y; ;B < A)
are values that separate the upper tail area (higher
side) of @/2 and (1 - &/2), respectively.

An approximate 100(1-2a)% CI for 6,2 is
given by

pr{SSA(] ~FIF) _ »_ SSA(- F/I-o)} -
rC a D
where
C= 2., ,» (upper tail)
D=7}, . (lower tail; D <C)
Fy A/IS'A/ MSW
F, = FZ}, (upper)

F,=F5%2, (lower; F,<F,)

Intraclass
correlation
coefficient

a

2 2
g, T,

Pr=

p, is a measure of how similar (or dissimilar) units
between groups are, compared with similarity
within groups.

It is the proportion of variability attributable to
groups. In the extreme case of no difference
between groups, p, would be zero.

The analysis of covariance

e Examine

one factor, but also take into account

extraneous (continuous) variables
e We can only measure covariate during the

experiment
e The influence of covariate on the response is
unknown
Model = -x
Y = HA+T, +[5"(ijj x__)+ e;
yij:(X)for jth subject in ith treatment
w: overall mean (X)
T;:effect of the ith treatment on (X)
B: coefficient for the linear regression of yij on
Xij
Xij: covariate for jth subject in ith treatment
x . overall covariate mean
Assumption e ¢;~NID(0,0%)indepently
Parameter !
constraint Z 7,=0
i=1
e Common slope f (not significant)




Adjusted
mean of Y

ylad] -

Vi + B(X. — %)
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Survey design
Sampling frame: a list of sampling units

Sampling unit: non-overlapping units for sampling
Unit: A group of elements

Element: an object on which measures are taken
NOTE: unit can be element.

Probability concepts

E¥)=pu
k
:nypf
j=1

Var(y) = S, (y; — 1) “p;= E(Y)-[E(Y)P?

Simple random sampling
e Sampling is done without replacement.
e Simpliest, appropriate with no prior information.

SE()= Var(p) =o'~

n

1 & 1
2 2

o' =——Y (N, ~1o? +
N—1i:1( e

—_ 1N |
y nlzz:,y,
62
Var() = (1-) %
n
2

Y, = Ny; Var(Y,) = Var(Ny) = N>(1- )<
n

Use sample proportion l’) to estimate population proportion p with

oo N (1=f)
Var(p)=—"—"pq-
D)=y P —,
= (l—f)~ﬂ since - =1 for large N
n N-1

Whereq=1-p.

Sampling size

2
n=N 1+N[ B J

24120

To estimate pop. total within D of true value

2
n>N 1+N‘{ D J
2,120

-1

To estimate pop. proportion with a specified margin of error B

ZNi(/ui _ﬂ)z

at siginifcance level a
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Ignoring the fpc and taking (N/(N —1))=1, we get

n> p(1-p) Zi/z
2

Not ignoring the fpc : After some manipulation

- 1+&[L]
p-p)\ 2,2

If no p is given, use p=0.5 (conversative + large sample size)

Stratified random sampling
e  Use to reduce variance
e  Obtain best results when within-stratum differences
is small, and large differences between stratum

means.
L

_ N, _
Ysr =Z?yw‘

1

with Var(3.; ) = Var[i e ?i] - Va[Z w3, } > WiVar(y,)

i=1

2

-y w2i-£)%
_ o

L
Yrst = N-yg = ZNJ:
i=1

with Var(y, )= Var(N-y, )=N"-Var(y, )

=Nz-iwz(l—f.)i=i]x}?(l—f)"—'2
= “'n = ",

i

| 2

w

i
]

T
2

Sample size

The sample size for stratum i according to proportional allocation

:n-Ni _f.N,.

i
The optimal sample size in stratum i is,
Nioy

A\
n.=n-

' N NIO-/

When sampling costs over the strata are equal,
ie. ¢, =c, =...=c,,this reduces to
N.o,

N 2
2No,
j=1

This is known as Neyman allocation.

¥ =

i

Design effect

. Var(estimate under current sampling plan
deff = ar( pling plan)

V(u'(eslimale under SRS with same sample size)



If deff <<1, then stratified random sampling is better than
SRS.

Cluster sampling
e Easy to implement
o Clusters are generally geographical entites
o  Useful when there is a large within-cluster variation

but small between-cluster variation.
a) When all cluster sizes are equal to L:

= | LTy BXE (O e
Yeu =;z}'i =;Z(I§Y-,)

83
nM?
B | _Zzyu

wheress; =m; ;y"' ———N

with Var(y,, ) = (1- %)

b) When cluster sizes are not all equal, we estimate the mean through ratio:
Zn:
yl
A N-n ),
T & = = 2
Yoo = im , with Var(y, )= ( N ].s,

wheres] =

Systematic sampling
e  Simple, save time and effort
e  Useful when we do not have a list of population
e If the population is period, DO NOT USE.

Method A: When N/k is an integer, choose a unit at random
from the first k™ unit. Take every k™ unit from the starting
unit.

Method B: Choose a unit at random from the population.
Starting point depends on remainder.

When N/k is not an integer, use Method B to ensure an
unbiased estimator of
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?ﬂw = mean of a systematic sample, with

— _ N=1 2 k(m=l) 2
Var{)f::_rs} - N a = N SH"

where o = population SD,
2 { k m =2
Sy = Tty Z,-=lzj=l{”:: u, ) and

—_— ] m
U, =w Z PRL

Ratio estimator

r=2

i , and
H, T
E(r)=z— (approximation is good for large samples)

x

Var(r)= ]_f %iu

We estimate

i(}}i;‘fi‘?}z by i(yf_rxx):

and 4 by ¥, giving

V.fi?‘{r]: 1-f -Lhi(yi—rxf.)z
n

2 n—1

i=1

2 e

X
I-f 1
X

2
=38

with Var(t,) = Var(z, {%})
} X

= 1. Var(r)



Var(Y,,) = 1. VAr(r)
=(Np )ZgiLZ(yl rx,)

N(N n)
~ n(n- Z(
_ N(N - n) 52
n

22
—2rx,y; +1°X;)

Regression estimator

Vir :J_/_B()_C_.UX)

— =71, A
Var(y,z) = nj %][5)2 - stj]
where

s, ——Z (v,—=¥) and si=-1 (x x)’

|5 sy —B7s3]

MSE=
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