1. Descriptive statistics

Terminology

Population – the set of all possible measurements of interest

Sample – a subset of measurements from the population

Graphs and tables

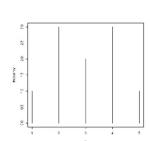
Stem and leaf plots

- Don't summarise present all available info → used for small data sets
- Data split into stem and leaf components → *shape* of distribution
 - o Stem
 - Leaf only final digit of observation
- By default, vertical line = decimal point

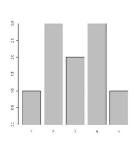
Frequency distribution

- Summarise → used for large data sets
- Intervals/bins
 - o Should have same length

lengt of bin
$$\frac{range\ of\ data}{number\ of\ bins}$$
 (round to next integer)


- Will be right-closed i.e. observation on the boundary between 2 bins will be included in the left bin e.g. (8, 10]
- Cumulative frequency total frequency up to and including a particular class
- $relative\ frequency = \frac{frequency}{sample\ size}$

Histogram


- Represents frequency distribution graphically
- For continuous data
- Describe main features of data
 - Overall pattern
 - o Area of conc.
 - o Presence/absence of outliers
 - Shape of distribution
 - Skewed to the left left side stretches further from peak than right side
 - Symmetric opposing sides approx.. symmetric about the middle
 - Skewed to the right right side stretches further from peak than left side

Ordinate diagram or barpolt

- For discrete data
- Plot of f_x against x

skewed to the left

skewed to the right

Measures of location

> Attempt to provide a single numerical value which represents whole data set

Mean = \overline{x} – the simple average

- + Simple to calculate
- Can be greatly affected by extreme observations pulled towards them
- Inappropriate when working with skewed distributions

$$\frac{1}{n} \sum_{i=1}^{n} x_i$$

Median = \widetilde{x} – the middle value

- If number of observations is even $-\tilde{x}$ = average of middle 2 observations
- + Not affected by outliers

Mode – the value that appears most frequently

- + Relevant for categorical and numerical data
- Might not exist
- Might not be unique possible to have a bimodal distribution (2 modes)

Shape of distribution

- Mean = median = mode → symmetric
- Mean > median > mode → skewed to the right
- Mean < median < mode → skewed to the left

Measures of spread or dispersion

Variance = s^2 – a measure of the spread around \bar{x}

- In terms of squared distances between the observations and \bar{x}
- In units²
- Dividing by $(n-1) \rightarrow$ unbiased population variance
- Always non-negative
- Variance = 0 if and only is all observations are equal to each other
- Large values of $s^2 \rightarrow$ more spread around \bar{x} = highly volatile
- Small values of $s^2 \rightarrow$ more conc. around \bar{x} = less volatile
- deviation of the observation = sample mean observation

$$\frac{1}{n-1} \left[\sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right)^2 \right]$$

Standard deviation = s

Same units as data

$$s = \sqrt{variance} = \sqrt{s^2}$$