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Week 1  
C-Language 

• Mainly used for systems software and software that needs hardware interaction. 
• Does not have objectives & classes, templates, operator/function overloading. 

o C++ overcomes this & is a successor of C 
• C-Programs consist of two language components: 

o Preprocessing language 
▪ Text-macro language 
▪ Definition of macros 
▪ Include files 
▪ Conditional compilation 

o C-language 
• The hello world output: 

#include <stdio.h> 
int main (int argc, char **argv) 
{ 
 printf(“Hello World!\n”); 

return 0; 
} 

• To run a c program, execute the following command: 
o clang hello.c –o hello 
o ./hello 

Java to C 
• Differences: 

o Control flow structures are the same 
o References are called pointers in C 
o No garbage collection Æ programmer is responsible for allocating & freeing 

memory 
o A C-Program consists of a set of files containing: global variables, function 

definitions (main is the first function invoked), functions have local variables. 
• Philosophical differences: 

o C closer to underlying machine 
o C has simple memory modal:  

▪ Pointers, bit-level operators 
▪ Arrays very close to memory model 

o C assume programmer knows best 
o Java object-oriented, C is procedural (no object, no polymorphism, no 

inheritance). 
• Strong similarities: 

o Block structured 
o Most control structures 
o Arrays 
o Operators 



o Basic data types 
• Preprocessor differences: 

o C macros (#define) 
o Call-by-name 
o C has declaration for variables & functions, often in header files that are 

included 
o Conditional compilation 

Arrays and memory 
• Arrays can be handled with pointers 
• Arrays can be created and initialized in declaration 
• C strings are just arrays (with termination character) 
• sizeof operator 
• Create dynamic data structures with malloc() 
• C allows declarations only at block start 

Functions in C 
• A function consists of: 

o A function declaration: name of function, return type of function, parameter 
list & their types 
int foo(float f1, char c2) 

o Followed by a function body: local variables & control flow 
• External or forward function declarations do not have a function body, just a 

semicolon 
o Parameter types are specified without variable names 

int foo(float, char); 
extern int foo(float, char); 

• A function with a given name can only be defined once 
• If no return value exists for a function, use the type void 

void foo(…) { … } 
• If no parameters exist, use type void  

void foo(void) {…} 
• Functions with arbitrary numbers of parameters are possible 

int printf(const char *format,..) 
o In this case, a special interface is required for querying values of parameters 

Æ at least one fixed parameter in the function is necessary 
printf(“%d, %f”, 10, 10.5); 

C modules 
• Programs consist of “modules” Æ a module is a file 
• Modules consist of: function declarations; function definitions; global variables 
• Modules are translated to object files 
• Object files are linked by linker with other object files & standard libraries 
• A module can refer to global variables and functions of other modules 

o Use the extern qualifier for global variables 
• Symbols can only be defined in one module 
• Data structures definitions & declarations, macro definitions & external function 

declarations are found in modules. 



Input/output functions 
• Basic input: int getchar(void); 

o Reads from standard input next character 
o Returns -1 (defined as the symbols EOF) if end of input reached  

• Basic output: void putchar(int c); 
o Write a character (represented as integer) to standard output  

printf() function 
• printf() – function writes to standard output: 

o Strings 
o Variables of primitive data-type  
int printf(const cahr *format, ..); 

• Return value: number of printed characters  Æ hence why the return type is int 
• Arguments: first argument is a format string; followed by an arbitrary number of 

parameters depending on format string. 
• Example: printf(“%d %f\n”, 10, 10.5); Æ output: 10 10.5 

Code Description 
%c Character 
%d Integer 
%u Unsigned integer 
%f, %g, %e Double floating point number 
%x Hexadecimal 
%ld Long 
%.2f Print floating point numbers with two decimal points 
%s String 
%p Pointer 
%% Print % 

scanf() function 
• scanf() function reads from standard input: values of primitive data-type & strings 

int scanf(const char *format,…); 
• Return value: number of successfully read items  
• Argument: first argument is a format string, followed by an arbitrary number of 

parameters depending on format string, parameters must be pointers, not values. 
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