
COMP2129 
Week 1  
C-Language 

• Mainly used for systems software and software that needs hardware interaction. 
• Does not have objectives & classes, templates, operator/function overloading. 

o C++ overcomes this & is a successor of C 
• C-Programs consist of two language components: 

o Preprocessing language 
▪ Text-macro language 
▪ Definition of macros 
▪ Include files 
▪ Conditional compilation 

o C-language 
• The hello world output: 

#include <stdio.h> 
int main (int argc, char **argv) 
{ 
 printf(“Hello World!\n”); 

return 0; 
} 

• To run a c program, execute the following command: 
o clang hello.c –o hello 
o ./hello 

Java to C 
• Differences: 

o Control flow structures are the same 
o References are called pointers in C 
o No garbage collection Æ programmer is responsible for allocating & freeing 

memory 
o A C-Program consists of a set of files containing: global variables, function 

definitions (main is the first function invoked), functions have local variables. 
• Philosophical differences: 

o C closer to underlying machine 
o C has simple memory modal:  

▪ Pointers, bit-level operators 
▪ Arrays very close to memory model 

o C assume programmer knows best 
o Java object-oriented, C is procedural (no object, no polymorphism, no 

inheritance). 
• Strong similarities: 

o Block structured 
o Most control structures 
o Arrays 
o Operators 



o Basic data types 
• Preprocessor differences: 

o C macros (#define) 
o Call-by-name 
o C has declaration for variables & functions, often in header files that are 

included 
o Conditional compilation 

Arrays and memory 
• Arrays can be handled with pointers 
• Arrays can be created and initialized in declaration 
• C strings are just arrays (with termination character) 
• sizeof operator 
• Create dynamic data structures with malloc() 
• C allows declarations only at block start 

Functions in C 
• A function consists of: 

o A function declaration: name of function, return type of function, parameter 
list & their types 
int foo(float f1, char c2) 

o Followed by a function body: local variables & control flow 
• External or forward function declarations do not have a function body, just a 

semicolon 
o Parameter types are specified without variable names 

int foo(float, char); 
extern int foo(float, char); 

• A function with a given name can only be defined once 
• If no return value exists for a function, use the type void 

void foo(…) { … } 
• If no parameters exist, use type void  

void foo(void) {…} 
• Functions with arbitrary numbers of parameters are possible 

int printf(const char *format,..) 
o In this case, a special interface is required for querying values of parameters 

Æ at least one fixed parameter in the function is necessary 
printf(“%d, %f”, 10, 10.5); 

C modules 
• Programs consist of “modules” Æ a module is a file 
• Modules consist of: function declarations; function definitions; global variables 
• Modules are translated to object files 
• Object files are linked by linker with other object files & standard libraries 
• A module can refer to global variables and functions of other modules 

o Use the extern qualifier for global variables 
• Symbols can only be defined in one module 
• Data structures definitions & declarations, macro definitions & external function 

declarations are found in modules. 



Input/output functions 
• Basic input: int getchar(void); 

o Reads from standard input next character 
o Returns -1 (defined as the symbols EOF) if end of input reached  

• Basic output: void putchar(int c); 
o Write a character (represented as integer) to standard output  

printf() function 
• printf() – function writes to standard output: 

o Strings 
o Variables of primitive data-type  
int printf(const cahr *format, ..); 

• Return value: number of printed characters  Æ hence why the return type is int 
• Arguments: first argument is a format string; followed by an arbitrary number of 

parameters depending on format string. 
• Example: printf(“%d %f\n”, 10, 10.5); Æ output: 10 10.5 

Code Description 
%c Character 
%d Integer 
%u Unsigned integer 
%f, %g, %e Double floating point number 
%x Hexadecimal 
%ld Long 
%.2f Print floating point numbers with two decimal points 
%s String 
%p Pointer 
%% Print % 

scanf() function 
• scanf() function reads from standard input: values of primitive data-type & strings 

int scanf(const char *format,…); 
• Return value: number of successfully read items  
• Argument: first argument is a format string, followed by an arbitrary number of 

parameters depending on format string, parameters must be pointers, not values. 
  


	Week 1
	C-Language
	Java to C
	Arrays and memory
	Functions in C
	C modules
	Input/output functions
	printf() function
	scanf() function

	Week 2
	Introduction to UNIX
	Files and Shells
	Shell commands and scripts
	More useful shell features
	Pointers
	Pointers (notation)
	Pointers and arrays
	Why use pointers?
	Pointer interpretation
	sizeof operator
	Enums

	Week 3
	Aggregate types
	Struct
	Unions

	Files
	Memory management

	Week 4
	Linked lists

	Week 5
	The C Preprocessor
	Conditional inclusion

	Week 6
	Processes
	Bitfields
	Strings, Sorting and function pointers

	Week 7
	Pipes and Signals
	Introduction to parallelism
	Forms of parallelism

	Week 8
	POSIX Threads Introduction
	Thread creation, termination
	Passing arguments to threads
	Thread synchronization upon termination (pthread_join)
	Thread scheduling

	Week 9
	Interleavings of Threads
	Lock-based thread synchronization
	Mutexes
	Barriers
	Semaphores
	Condition variables

	Potential problems
	Deadlocks
	Lock contention & lock granularity
	Livelocks
	Starvation


	Week 10
	Recursion
	Divide and Conquer
	Reductions

	Week 11
	Performance of Parallel Programs
	Amdahl’s law
	Load Balancing
	Measuring performance
	Sources of performance loss
	Profiling
	Reasoning about performance


	Week 12
	Week 13

