Membrane Transport Processes

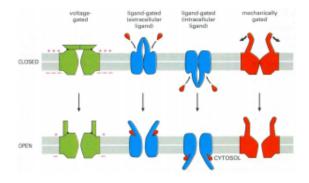
Membrane Transport

Diffusion

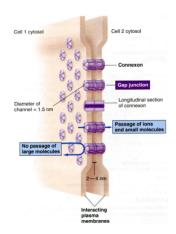
- Molecules diffuse from high to low concentration
- Movement is random for each individual molecule
- The amount of substance moving per time is flow
- Flux is equal to flow/area
 - o Flux depends on the concentration gradient (Fick's Law of Diffusion)
- Diffusion is greater for lighter substances

$$Flux(j) = D \frac{(C_1 - C_2)}{s}$$
$$Flow = j \times A$$

Body Fluids

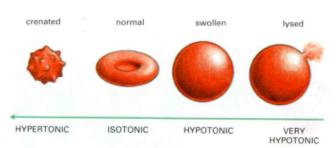

- 1/3 of total body water is extracellular fluid
- 2/3 of total body water is intracellular fluid
- Lipid bilayer divides intra and extracellular spaces
- Large and/or charged solutes cannot move through the cell membrane

Vesicle Transport

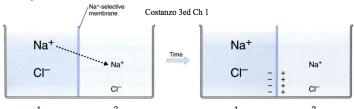

- Endocytosis
 - o Pinocytosis cell drinking
 - o Phagocytosis cell eating
- Binds to a receptor protein on cell surface
- Examples include:
 - o Exocytosis of neurotransmitters from nerves
 - Phagocytosis of bacteria by macrophages

Channels

- Small polar molecules use protein channels
- Channels are transmembrane proteins that form a water filled pore
- Channels are often selective
 - Sodium channels will not allow potassium through
- Channels are often gated
 - o Pores are ungated channels
 - Voltage Gated Channels
 - Nerves and muscle cells
 - Ligand gated channels
 - Opened by
 - neurotransmitters
 - Mechanically gated channels
 - Touch and hearing



- Gap junctions are pores between cells
 - Formed from transmembrane protein connexon


Osmosis

- Almost all cells have aquaporins water channels to allow water to diffuse
- Osmotic pressure differences drive water in
 - Pressure increases until pressure drives water back out
- Hyperosmotic cells shrink hypertonic
- Hypoosmotic cells swells hypotonic
- 150mM NaCl is isotonic
- Tonicity is a change in cell volume by osmosis

Membrane Potential

• When ions are found on either side of the membrane, the membrane becomes polarised

- Concentration gradients have chemical potential energy
- Voltage generates electrical potential energy
- Nernst Equation gives membrane potential at equilibrium
 - Assumes only one ion is permeable

$$V = -\frac{RT}{zF} \ln \left(\frac{[X_{out}]}{[X_{in}]} \right)$$

• Capacitance is the relationship between charge and voltage

$$q = CV q = zFn$$

$$n = \frac{q}{zF}$$

- Real cells are permeable to many ions and the Goldman Equation is used
- For positive ions the equation is in/out
- For negative ions the equation is out/in
- An example is shown below for K+, Na+ and Cl-

$$V = -\frac{RT}{F} \ln \frac{P_K[K_{IN}^+] + P_{Na}[Na_{IN}^+] + P_{Cl}[Cl_{OUT}^-]}{P_K[K_{OUT}^+] + P_{Na}[Na_{OUT}^+] + P_{Cl}[Cl_{IN}^-]}$$

- Only relative permeability is required
- As permeability to one ion increases, the membrane potential moves closer to the Nernst Equilibrium
- At rest, most cells are much more permeable to potassium than sodium

Nerve Action Potential

- Membrane goes from -70mV to +30mV in 1 msec
 - Caused by the opening of Na⁺ channels
- Move towards 0mV is known as depolarisation or hyperpolarisation

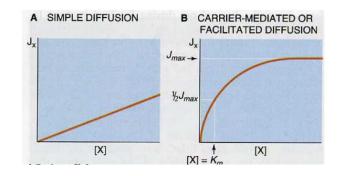
Flow of lons

- Flow is the movement of ions
- Flux is flow/area
- Can relate this to current:

$$j = \frac{i}{zFA}$$

- No current will flow at the equilibrium voltage
- Current is given as the flow of positive charges
- Conductance is how easy charges can move

Transport Proteins


Pores and Channels

- The cell membrane is permeable to lipid soluble molecules
- Pores and channels increase permeability
- Pores are non-gated channels

Carriers

- Carriers bind to the solute and change their conformation
- Opens to other side of membrane and releases solute
- Rate is limited by the speed of each carrier and the number of carriers

- This process is known as facilitated diffusion
- Carrier mediated transport shows a saturation and will have a maximum transport rate (J_{MAX})

