
BUSS1020 Notes

Data Types

Sampling Data

- Non-probability sampling:
 - Convenience sample: selection easy, inexpensive, quick (e.g. 'snowball' sampling)
 - o **Judgement sample:** 'experts' select most appropriate sample
 - Self-selected sample: individuals choose to participate
 - o **Quota sample:** use pre-set quotas of groups chosen
- Probability sampling:
 - Simple Random: Every individual or item in the frame has equal chance of being selected.
 - Systematic: Divide your sample into n groups (equal size) and pick the kth person from each group. E.g. every 3rd person in each group here
 - Stratified: Divide data into important characteristics and select your sample. <u>E.g. pick 10 people from each BUSS1020 tutorial class.</u>
 - Cluster: Population is divided into several "clusters", each representative
 of the population. <u>E.g. pick 3 BUSS1020 tutorials of all the tutorials</u>
- Sampling Errors:
 - Selection bias: Exists if some groups are excluded from the frame and have no chance (or little chance) of being selected.
 - Non-response error or bias: People who choose not to respond may be different from those who do respond.
 - o **Sampling error**: Variation from sample to sample; will always exist.
 - Measurement error: Due to weaknesses in question design, respondent error and interviewer's effects on the respondent.

Organising and Visualising Data

Variable type	Organising	Visualising
Categorical (1 variable)	Summary Table (frequency and/or percentage)	Bar charts Pie charts Pareto charts
Categorical (2 variables)	Contingency Table	Side-by-side bar chart
Numerical (1 variable)	Ordered Array Frequency Distributions Cumulative Distributions	Histogram Polygon Ogive
Numerical (2 variables)	Same as above	Scatter plot Time series plot

Numerical Descriptive Measures

- **Central tendency**: extent to which the data values group around <u>a central value</u>.
- Variation: amount of dispersion around the central value.
- **Shape**: pattern of distribution from lowest to highest value.
- Measures of Central tendency
 - Mean: the average value of the observation.
 - o **Median**: middle value in the ordered array.
 - Mode: Most frequently observed value
 - o Geometric mean: Rate of change of a variable, over time.

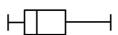
$$\overline{X}_G = (X_1 \times X_2 \times \cdots \times X_n)^{1/n}$$

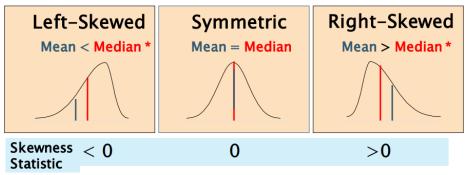
Rate of return

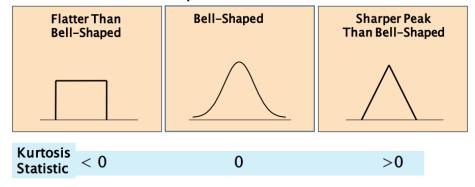
$$\overline{R}_{G} = [(1+R_{1})\times(1+R_{2})\times\cdots\times(1+R_{n})]^{1/n} - 1$$

- Common measures of variation
 - o Range: difference between largest and smallest value
 - o **Sample Variance:** avg. of squared deviations of values from mean
 - o Sample Standard Deviation: square root of variance
 - o Interquartile Range: measures spread in middle 50% of data
 - Coefficient of Variation: measures relative variation compared to the mean
 - Z score: calculate how many standard deviations a value is from the sample mean
 - o The five-number summary:
 - Minimum
 - First quartile
 - Median
 - Third quartile
 - Maximum

Left-Skewed Symmetric Right-Skewed







- Distribution Shape
 - Skewness
 - This describes the amount of **asymmetry** in a distribution

- Kurtosis
 - Describes relative concentration of values in the center as compared to the tails

Measure	Population	Sample
Mean	μ	\overline{X}
Variance	σ^2	S^2
Standard Deviation	σ	S

• Empirical Rule

- The empirical rule describes that in the bell shape distribution, approximately
- o **68%** of data is within **one** standard deviation from the mean;
- o **95%** of data is within **two** standard deviation from the mean;
- o 99.7% of data is within three standard deviation from the mean;

• Chebyshev's Rule

o At least $(1-1/k^2)$ * 100% of the values will fall within **k** standard deviations of the mean (k>1)