Week 1

- Cells as the structural and functional units of life
 - Cells are the most basic unit of life
 - o In all cells
 - Hereditary information is stored as DNA
 - DNA is replicated by template-directed polymerisation
 - Sections of DNA are transcribed into RNA
 - Proteins are used as catalysts
 - Proteins are produced by translation of RNA
 - Basic mechanism of translation is the same
- The universal nature of genetic information and its mode of expression
 - Genetic information is stored in DNA
 - DNA is transcribed into RNA for protein synthesis using complimentary base pairing (A=T, C=G)
 - DNA can be switched 'on' and 'off' in response to environmental conditions
 - o Controls cell growth, function and reproduction
- The quantities of DNA required for cell function
 - Much of the DNA in a cell is 'silent' or 'noncoding'
 - o Humans have approx. 20,000-25,000 protein coding genes
- The organisation of DNA into functional units genes
 - o DNA is sorted into 'genes' which code for a particular protein
 - Genes contain coding (exons) and noncoding (introns) areas of DNA
- Describe the primary and secondary structure of both DNA and RNA
 - Bases consist of:
 - Sugar (deoxyribose in DNA and ribose in RNA)
 - Phosphate groups
 - Nitrogenous base
 - Nitrogenous bases can be:
 - Purines double carbon/nitrogen ring (A and G)
 - Pyrimidines single carbon/nitrogen ring (T, C and U)
 - Primary
 - Sugar-phosphate backbone
 - Linear sequence of bases in hydrophobic single strand
 - Strand has orientation (5' to 3')
 - Secondary
 - Nitrogenous bases form hydrogen bonds (A-T forms 2, G-C forms 3)
 - Strands form antiparallel
 - o Tertiary
 - Double helix
- Recognise how DNA can act as a template
 - Complimentary base pairing allows DNA to act as a template for transcription
- Begin to recognise the implications structure has on function, especially as it relates to DNA replication and expression
 - Complementary strands of DNA encode two copies of the gene, and thus can be used for replication and repair

- Recognise that physical properties are the consequence of structure
 - Structural features
 - Double stranded helix
 - Hydrogen bonding maintains helix
 - Complimentary base pairing
 - Long length and thin diameter
 - Acidity due to negatively charged phosphates
- Understand the structural basis of DNA's:
 - Solubility
 - Polyanionic due to the high phosphate content
 - Soluble in aqueous/low salt condition
 - Insoluble in alcohols
 - Viscosity
 - Long, rigid, rod shape
 - Large hydrodynamic volume (attracts large shell of water from phosphate groups)
 - Disruption of hydrogen bonding decreases viscosity
 - Mechanical shearing decreases viscosity
 - UV absorption
 - Nitrogenous bases strongly absorb UV at 260nm
 - Double helix shield bases
 - Can be used to measure concentration
 - o Acidity
 - Acidic due to negative phosphates
 - Denaturation
 - High temperature and pH extremes interrupt hydrogen bonding
 - When denatured, viscosity decreases and UV absorption increases
 - Renaturation
 - Renatures easily because of complimentary base pairing
- Understand the process of hybridisation between nucleic acids and the technical use of probes
 - Hybrid molecules can form when species have complimentary sequences
 - o Two DNA species are heated, mixed and cooled
 - Allows probing to determine sequences
- Describe the behaviour of DNA molecules during gel electrophoresis
 - Move towards positive pole because of negative phosphate groups
 - Smaller fragments move faster/go further
 - Supercoiled goes fastest, then linear, then circular

Week 2

- Describe the role of restriction endonucleases in nature and in the laboratory
 - Restriction endonucleases are used by bacteria to protect their cells (cut viral DNA when it enters their cells)
 - They cut very specific places and thus generate a reproducible set of fragments
 - Used in labs to analyse DNA

- Bacteria protect their own DNA from being cut up by methylating the area where the endonuclease would cut, thus rendering it unrecognisable
- Restriction sites are between 4-8 bases long, and normally palindromic
- Describe the use of Southern blotting to detect specific DNA sequences
 - o DNA is fragmented using restriction endonucleases
 - o Run through electrophoresis
 - o Denatured and hybridised with probes
 - Sequences are then detected using autoradiography or fluorescence
- Describe the principles of DNA sequencing using the 'dideoxy method'
 - o Sequence is run on acrylamide gel
 - Bases organised into separate columns
 - First base moves the furthest
- Have some appreciation of the scientific and social value of the Human Genome Project
 - o Diagnostics
 - o Evolutionary studies
 - o Population genetics
 - o Genome organisation
 - o Identify gene functions
 - Product development
- Describe the basic process of transcription
 - Directed by complimentary base pairing
 - Selected regions on one strand act as a template
 - RNA polymerase runs along the strand and connect matching base pairs
 - In prokaryotes
 - Enhancer, promoter and RNA polymerase bind to strand
 - Loop activation intermediate forms
 - Forms polycistronic mRNAs (multiple proteins coded for on the same gene)
 - In eukaryotes
 - Gene interruption and chromatin structure interrupt transcription
 - Requires promoter and transcription factors
- Understand the selective and variable nature of gene expression
 - Exons (coding) and introns (non-coding)
 - o Introns cut out of RNA in nucleus before transport to cytoplasm
- Describe eukaryotic gene structure
 - Genes on chromosomes
 - Separated by coding and non-coding
- Understand the impact that eukaryotic gene structure and cellular organisation has on transcription
 - Nucleus means that transcription and translation can't be simultaneous
 - Introns and exons mean that RNA must be processed further before translation