Lecture 1 - Reading Chapter 1

Terminology

- Individuals/units objects described by a set of data
 - Can be people, animals or things
- Variable any characteristic of an individual
 - Can take different values for different units
 - Any random unit will have a random variable
 - Can be categorical (groups) or numerical/quantitative (ordinal (numbered order eg shirt size) or discrete/continuous (counts of a characteristic – can take any number on a number scale))

Distribution of a Random Variable

- A distribution is a summary that indicates:
 - What values a variable takes and
 - How often it takes these values
- Visual summaries can be a table, graph or function
 - Categorical pie chart, bar chart
 - Numerical histogram, dot plots, stem and leaf plot (frequency distribution of a quantitative variable)

Examining Distribution of Numerical Continuous Data

- Location around what value is the data located
- Spread what is the variability among the data values
 - o Range max and min
 - Limits that most values are in
- Shape what is the distribution of the data
 - Overall pattern
 - Deviation from the pattern
 - Outliers any gaps in a histogram indicate that anything above that is an outlier

Histogram

- Frequency distribution of continuous numerical data
- Procedure
 - Divide the values into equal intervals (bins)
 - Count how many observations in each interval
 - Draw chart representing this distribution
 - o Aim for between 6 and 12 columns/intervals/bins
 - Right skew = positive skew
- Describing a histograms

- Shape symmetric or skewed
- Centre around what value is the data grouped
- Spread how far spread is the data
- Outliers is there an individual value that falls outside the normal pattern (separate)
- Measuring the centre of distribution
 - Mean average
 - Median middle
- Measuring the spread of distribution
 - Standard deviation the variability that individual data values are from the mean
 - Quartiles quartile 1 is the middle of the lower half, and quartile 3 is the middle of the upper half

Outliers

- An outlier is a data point not consistent with the bulk of the data
- Can have a big influence on conclusions
- Can cause complications in statistical analyses
- Cannot discard without justification
- Possible reasons:
 - Mistake in measurement or data entry
 - Individual in question belongs to a different group than bulk
 - o Outlier is legitimate and represents natural variability
- Affect the mean more than the median

•

Lecture 2 - Reading Chapter 2

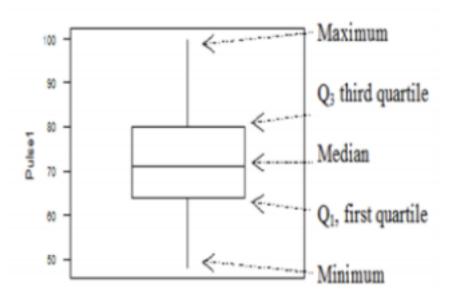
Measuring the centre of a distribution

- Mean
 - Arithmetic average of the data value
 - Used when bell shaped distribution is symmetrical
- Median
 - The middle value
 - Location is the (n + 1)/2 position in the ordered (smallest to largest) list
 - Less affected by outliers
 - Used when curve is skewed

Measuring the spread of a distribution

Standard deviation

 The variability (on average) that individual data values are from the mean


$$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n - 1}}$$

0

- Use STDEV.S in excel (measures sample SD rather than population SD)
- Quartiles
 - o The 25% and 75% position in the ordered list of data
 - o The middle value of each half

	Approach 1	Approach 2
Location	Median	Mean (arithmetic average)
Spread	Interquartile Range	Standard deviation
Summary	Five-number summary	
Pictorial representation	Box-plot	Frequency distribution (histogram)

How to draw a boxplot

- Label a vertical (or horizontal) axis with a numbered scale from min to max
- Draw box with lower end at Q1 and upper end at Q3
- Draw a line through the box a the median
- Place a dot at the minimum and the maximum
- Check for outliers
 - \circ Locate the lower boundary (Q1-1.5 x IQR) and upper boundary (Q3 + 1.5 x IQR)
 - All data outside these values are outliers
- Draw line from Q1 end of box to smallest data value inside boundary and from Q3 end to the largest value inside boundary
- IQR -> Q3 Q1
- When finding 1st and 3rd quartile, exclude the median data point Comparative Boxplots
 - Best way of "picturing" sub-groups in the same measurement
 - Location
 - o Compare medians and box overlap is there a difference
 - Spread
 - $\circ~$ Box covers the middle 50% of the data (the IQR) are they similar in size
 - Possible outliers are marked with an asterisk are there any in one or both groups?
 - Symmetry of distribution
 - Position of median in the box

Outliers