| Topic A - Regulation of Metabolism | | | |---|--|--| | Give an overview of the central role of the liver | Acts as a processor and distributor of nutrients to other tissues The liver takes up carbohydrates, lipids and amino acids after a meal which are metabolised, stored or transported to other tissue Smooths out broad fluctuations in the availability of nutrients for | | | Describe the transport of glucose into different tissues | GLUT1 - everywhere Recognition and binding of glucose causes conformational change Returns to original conformation when glucose is released GLUT2 - liver and pancreas High Km for glucose - maximal glucose uptake when blood glucose is high When blood glucose is low, liver GLUT2 doesn't take up glucose and leaves it for other tissues In pancreatic beta cells, glucose uptake signals that blood glucose is high, initiating secretion of insulin GLUT3 - brain GLUT4 - muscles, fat, heart Insulin stimulates GLUT4 expression in myocytes | | | Discuss the regulation of enzyme concentration in cells and its role in the regulation of cellular metabolism | (synthesising glycogen) and adipocytes (synthesising triacylglycerols) Insulin causes more GLUT4 to come to the membrane, resulting in increase in glucose uptake GLUT5 – intestine, kidneys Ubiquitination signalling protein breakdown Regulation by metabolites, hormones and growth factors Glukokinase and phosphofructokinase are induced by insulin Repression of synthesis – usually by an end product of a metabolic pathway Localised expression | | | Discuss kinetic regulation of enzyme activity Discuss allosteric enzyme regulation and regulation by reversible | Substrate concentration Product concentration Coenzyme concentration Allosteric Reversible, non-covalent binding of a modulator at a site other than the active site Binding of modulator causes conformational change in enzyme structure Binding of substrate occurs more readily to one conformation | | | covalent | Covalent modification | |-----------------|---| | modification | o Reversible | | | Linkage of a chemical group to activate/inactivate enzyme | | | (e.g. Phosphorylation, adenylation, methylation) | | Discuss the use | Isoenzymes, found in different tissues, can be identified based on | | of enzymes to | different physical and chemical properties an thus can identify | | detect various | which area of the body is suffering damage | | diseases | Lactate dehydrogenase | | | o Creatine kinase | | | Aspartate amino transferase | | Explain the | Maintain homeostasis – rate of synthesis of a metabolite equals the | | importance on | rate of breakdown of this metabolite | | regulating the | Allows storage of metabolites in case of starvation | | pathways of | Ensures all tissues obtain required energy | | glycolysis and | | | gluconeogenesi | | | S | | | Discuss the | Hexokinase | | three key | ∘ Glucose <-> G6P | | reactions where | Isoenzymes regulated by sequestration and transcription | | regulation | Phosphofructokinase | | occurs and | o F6P <-> F-1,6-bisP | | outline how | Complex allosteric enzyme – multiple substrate and | | they are | regulatory binding sites | | regulated | ATP inhibits (an end product of glycolysis) | | | AMP activates (and end product of gluconeogenesis) | | | Fructose-2,6-bisphosphate is produced to regulate | | | glycolysis/gluconeogenesis by increasing the affinity of PFK-1 | | | for F-6-P and reducing affinity of FBPase-1 for F-1,6-bisP | | | Pyruvate kinase | | | Allosterically activated by fructose-1,6-bisphosphate | | | Allosterically inhibited by signs of abundant energy supply | | | (ATP, acetyl-CoA, long chain fatty acids and alanine) | | | Inactivated by phosphorylation by glucagon | | Discuss the | Glycogen phosphorylase removes glucose residues from glycogen | | regulation of | Activated by glucagon (when blood glucose drops) or adrenaline | | glycogen | (when sudden energy is required) is released, starting a | | phosphorylase | phosphorylation cascade via cAMP | | | Allosteric regulation | | | When glucose levels return to normal, glucose enters the liver cells | | | and binds to an allosteric site on phosphorylase A to inhibit the | | | enzyme | | Explain | Proteins can be modified in order to activate or inactivate them | | reversible | Covalent binding to an allosteric site can modify the active site, | | covalent protein | decreasing or increasing tis ability to bin substrate | |------------------|--| | modification | | | Outline | Glycogen synthesis | | reciprocal | favored | | regulation of | CH₂OH CH₂OH | | glycogen | | | synthesis and | - Glycogen - synthase a - | | breakdown | (active) CH ₂ OH | | | CH ₂ OH | | | Glycogen | | | phosphorylase b | | | (less active) | | | P _{i v} CH ₂ OH ATP | | | phosphoprotein phosphatase protein kinase | | | phosphorylase b
kinase | | | a phosphatase CH ₂ O-P | | | H ₂ O Glycogen synthase b | | | (less active) CH ₂ O-P | | | CH ₂ O-P | | | Ch ₂ O (2) | | | - Glycogen phosphorylase a - | | | (active) | | | CH ₂ O-P | | | Glycogen breakdown
favored | | Describe the | G-protein-coupled receptor-triggered signalling cascade used in cell | | cAMP- | communication | | dependent | The activated G subunit binds to and activates adenylyl cyclase, | | protein kinase | which then catalyses the conversion of ATP into cyclic adenosine | | cascade | monophosphate (cAMP) | | | Increase in cAMP can lead to activation of | | | Cyclic nucleotide-gated ion channels | | | Exchange proteins activated by cAMP | | | o Protein kinase A (PKA) | | | PKA then phosphorylates a number of other proteins, including | | | glycogen phosphorylase | | Describe the | Glutamate dehydrogenase is the major enzyme | | mechanism of | Releases the amino group from glutamate and produces alpha- | | deamination of | ketoglutarate and ammonium | | amino acids | Closely linked with the citric acid cycle | | | Occurs in the mitochondria | | | Produces NADH | | Discuss the fate | Turned to glucose and sent back into the bloodstream | | of the amino | Carbon skeletons form alpha-keto acids and enter the citric acid |