Topic A - Regulation of Metabolism		
Give an overview of the central role of the liver	 Acts as a processor and distributor of nutrients to other tissues The liver takes up carbohydrates, lipids and amino acids after a meal which are metabolised, stored or transported to other tissue Smooths out broad fluctuations in the availability of nutrients for 	
Describe the transport of glucose into different tissues	 GLUT1 - everywhere Recognition and binding of glucose causes conformational change Returns to original conformation when glucose is released GLUT2 - liver and pancreas High Km for glucose - maximal glucose uptake when blood glucose is high When blood glucose is low, liver GLUT2 doesn't take up glucose and leaves it for other tissues In pancreatic beta cells, glucose uptake signals that blood glucose is high, initiating secretion of insulin GLUT3 - brain GLUT4 - muscles, fat, heart Insulin stimulates GLUT4 expression in myocytes 	
Discuss the regulation of enzyme concentration in cells and its role in the regulation of cellular metabolism	(synthesising glycogen) and adipocytes (synthesising triacylglycerols) Insulin causes more GLUT4 to come to the membrane, resulting in increase in glucose uptake GLUT5 – intestine, kidneys Ubiquitination signalling protein breakdown Regulation by metabolites, hormones and growth factors Glukokinase and phosphofructokinase are induced by insulin Repression of synthesis – usually by an end product of a metabolic pathway Localised expression	
Discuss kinetic regulation of enzyme activity Discuss allosteric enzyme regulation and regulation by reversible	 Substrate concentration Product concentration Coenzyme concentration Allosteric Reversible, non-covalent binding of a modulator at a site other than the active site Binding of modulator causes conformational change in enzyme structure Binding of substrate occurs more readily to one conformation 	

covalent	Covalent modification
modification	o Reversible
	 Linkage of a chemical group to activate/inactivate enzyme
	(e.g. Phosphorylation, adenylation, methylation)
Discuss the use	Isoenzymes, found in different tissues, can be identified based on
of enzymes to	different physical and chemical properties an thus can identify
detect various	which area of the body is suffering damage
diseases	 Lactate dehydrogenase
	o Creatine kinase
	 Aspartate amino transferase
Explain the	Maintain homeostasis – rate of synthesis of a metabolite equals the
importance on	rate of breakdown of this metabolite
regulating the	Allows storage of metabolites in case of starvation
pathways of	Ensures all tissues obtain required energy
glycolysis and	
gluconeogenesi	
S	
Discuss the	Hexokinase
three key	∘ Glucose <-> G6P
reactions where	 Isoenzymes regulated by sequestration and transcription
regulation	Phosphofructokinase
occurs and	o F6P <-> F-1,6-bisP
outline how	 Complex allosteric enzyme – multiple substrate and
they are	regulatory binding sites
regulated	 ATP inhibits (an end product of glycolysis)
	 AMP activates (and end product of gluconeogenesis)
	 Fructose-2,6-bisphosphate is produced to regulate
	glycolysis/gluconeogenesis by increasing the affinity of PFK-1
	for F-6-P and reducing affinity of FBPase-1 for F-1,6-bisP
	Pyruvate kinase
	 Allosterically activated by fructose-1,6-bisphosphate
	 Allosterically inhibited by signs of abundant energy supply
	(ATP, acetyl-CoA, long chain fatty acids and alanine)
	 Inactivated by phosphorylation by glucagon
Discuss the	Glycogen phosphorylase removes glucose residues from glycogen
regulation of	Activated by glucagon (when blood glucose drops) or adrenaline
glycogen	(when sudden energy is required) is released, starting a
phosphorylase	phosphorylation cascade via cAMP
	Allosteric regulation
	When glucose levels return to normal, glucose enters the liver cells
	and binds to an allosteric site on phosphorylase A to inhibit the
	enzyme
Explain	Proteins can be modified in order to activate or inactivate them
reversible	Covalent binding to an allosteric site can modify the active site,

covalent protein	decreasing or increasing tis ability to bin substrate
modification	
Outline	Glycogen synthesis
reciprocal	favored
regulation of	CH₂OH CH₂OH
glycogen	
synthesis and	- Glycogen - synthase a -
breakdown	(active) CH ₂ OH
	CH ₂ OH
	Glycogen
	phosphorylase b
	(less active)
	P _{i v} CH ₂ OH ATP
	phosphoprotein phosphatase protein kinase
	phosphorylase b kinase
	a phosphatase CH ₂ O-P
	H ₂ O Glycogen synthase b
	(less active) CH ₂ O-P
	CH ₂ O-P
	Ch ₂ O (2)
	- Glycogen phosphorylase a -
	(active)
	CH ₂ O-P
	Glycogen breakdown favored
Describe the	G-protein-coupled receptor-triggered signalling cascade used in cell
cAMP-	communication
dependent	The activated G subunit binds to and activates adenylyl cyclase,
protein kinase	which then catalyses the conversion of ATP into cyclic adenosine
cascade	monophosphate (cAMP)
	Increase in cAMP can lead to activation of
	 Cyclic nucleotide-gated ion channels
	 Exchange proteins activated by cAMP
	o Protein kinase A (PKA)
	PKA then phosphorylates a number of other proteins, including
	glycogen phosphorylase
Describe the	Glutamate dehydrogenase is the major enzyme
mechanism of	Releases the amino group from glutamate and produces alpha-
deamination of	ketoglutarate and ammonium
amino acids	Closely linked with the citric acid cycle
	Occurs in the mitochondria
	Produces NADH
Discuss the fate	Turned to glucose and sent back into the bloodstream
of the amino	Carbon skeletons form alpha-keto acids and enter the citric acid