BMS1052 Learning Objectives

Foundations	
Describe the	Neurons consist of three distinct areas – the axon, cell body and dendrite
structure of	Neurons contain extensive microtubules to deliver proteins and other
prototypical	molecules down axons and dendrites (no protein synthesis in axons and
neurons	dendrites)
	The membrane of the axon contains specialised proteins – ion channels
	and ion pumps
	 The synapse is the connection between two neurons – axons deliver
	signals to dendrites (often onto dendritic spines)
Describe the	 In general, information is transmitted away from the cell body via axons
function of the	and towards the cell body via dendrites
axon and	-
dendrites	Transport of materials and information Slove even learning transport diffusion through sytoplasm an along
uenurites	Slow axoplasmic transport – diffusion through cytoplasm or along
	the membrane
	Fast axoplasmic transport – active transport via kinesin walking
	vesicles along the microtubules
	Transport can be anterograde (towards the synapse) or retrograde
- 1 - 1	(away from the synapse)
Identify ways of	Neurons vary in:
characterising and	Number of neurites – unipolar (dendrite extends from axon), bipolar
naming neurons	(one axon and one dendrite attached to either side of the soma), or
	multipolar (lots of dendrites attached to the soma and one axon)
	 Shape and dendrite – stellate (collate info within a brain region) or
	pyramidal cells (send info to other brain regions)
	 Connections
	 Axon length – Golgi Type I (extend axons from one brain region to
	another) or Golgi Type II (involved in computations within a brain
	region)
	Neurotransmitters
Identify the 4	Myelinating glia – oligodendroglia (CNS) and Schwann cells (PNS)
different classes	Astrocytes
of glia cells	Microglia
	Ependymal cells
Describe the role	Myelinating glia
and location of the	 Oligodendroglia (CNS) and Schwann cells (PNS) generate myelin
4 different classes	 Myelin forms a sheath around axons, providing electrical insulation
of glia cells	and increasing speed and efficiency of communication
_	Regular gaps in the myelin are called Nodes of Ranvier and allow
	signals to travel faster by jumping between gaps
	Astrocytes
	 Most numerous glia in the brain – fill spaces between neurons and
	vessels
	 Influence neuron growth and regulate chemical content of
	extracellular space (can take ions from one region and move them to
	another)
	Also maintain blood-brain barrier and provide metabolic support for
	neurons
	Microglia
	Macrophages – remove debris associated with dead/degenerating
	cells
	Fight inflammation within the brain
	Ependymal cells
	- apondymur cons

	 Epithelium-like cells that line fluid-filled ventricles in the brain and
	produce CSF
Identify the factors that lead to movement of ions across a membrane	 Concentration gradient Ions diffuse "down" their concentration gradient – from high to low concentration Electric field Ions move towards opposite charges At equilibrium there is no net ion flow across the membrane These movements create tension between the electrical pull and the concentration pull
Describe the factors affecting an ionic equilibrium	 Concentration ratio Electric charge Not the permeability
potential Describe the factors affecting a cell's resting membrane potential	 The cell's resting membrane potential is approximately -65mV Concentration ratio Electric charge Permeability of all ions
Apply the Nernst equation and Goldmann equation	$E_{ion} = 2.303 \frac{RT}{zF} \log_{10} \frac{[ion]_{out}}{[ion]_{in}} \begin{array}{c} \text{z-ionic charge} \\ \text{T-temperature} \\ \text{R-universal gas constant} \end{array}$ $= \frac{61.5}{z} \log_{10} \frac{[ion]_{out}}{[ion]_{in}} \text{in mV} \begin{array}{c} \text{Note that equilibrium potential is independent} \\ \text{of } permeability \text{ and } ionic conductance.} \end{array}$ $V_m = 61.5 \log_{10} \frac{P_K[K]_{out} + P_{Na}[Na]_{out} + P_{Cl}[Cl]_{in}}{P_K[K]_{in} + P_{Na}[Na]_{in} + P_{Cl}[Cl]_{out}}$ $\bullet \text{What matters is the relative ionic permeability (an ion's permeability compared to the permeability of other ions)}$
Know how to estimate equilibrium and membrane potentials	Can estimate the membrane potential by knowing which ion is the most permeable
Describe the function of the Na/K-ATPase (Na-K pump)	 The pump actively transports Na and K across the membrane Requires ATP – pushed Na out of the cell and K into the cell against their concentration gradients Conformational changes When open intracellularly, the pump binds ATP and 3 intracellular Na ions ATP is hydrolysed, leading to phosphorylation and release of ADP The pump changes conformation, releasing Na into the extracellular space The pump binds 2 extra K ions, causing dephosphorylation and a second conformational change, returning it to its original position ATP binds and K ions are released 3 Na out, 2 K in
Describe how selectivity and gating occurs in Na and K channels	 Channels are selectively permeable due to physical shape and chemical properties Pore loop act as physical filter (due to close proximity) Charged domains on amino acid residues act as a chemical filter

