BMS1052 Learning Objectives | Foundations | | |---------------------|--| | Describe the | Neurons consist of three distinct areas – the axon, cell body and dendrite | | structure of | Neurons contain extensive microtubules to deliver proteins and other | | prototypical | molecules down axons and dendrites (no protein synthesis in axons and | | neurons | dendrites) | | | The membrane of the axon contains specialised proteins – ion channels | | | and ion pumps | | | The synapse is the connection between two neurons – axons deliver | | | signals to dendrites (often onto dendritic spines) | | Describe the | In general, information is transmitted away from the cell body via axons | | function of the | and towards the cell body via dendrites | | axon and | - | | dendrites | Transport of materials and information Slove even learning transport diffusion through sytoplasm an along | | uenurites | Slow axoplasmic transport – diffusion through cytoplasm or along | | | the membrane | | | Fast axoplasmic transport – active transport via kinesin walking | | | vesicles along the microtubules | | | Transport can be anterograde (towards the synapse) or retrograde | | - 1 - 1 | (away from the synapse) | | Identify ways of | Neurons vary in: | | characterising and | Number of neurites – unipolar (dendrite extends from axon), bipolar | | naming neurons | (one axon and one dendrite attached to either side of the soma), or | | | multipolar (lots of dendrites attached to the soma and one axon) | | | Shape and dendrite – stellate (collate info within a brain region) or | | | pyramidal cells (send info to other brain regions) | | | Connections | | | Axon length – Golgi Type I (extend axons from one brain region to | | | another) or Golgi Type II (involved in computations within a brain | | | region) | | | Neurotransmitters | | Identify the 4 | Myelinating glia – oligodendroglia (CNS) and Schwann cells (PNS) | | different classes | Astrocytes | | of glia cells | Microglia | | | Ependymal cells | | Describe the role | Myelinating glia | | and location of the | Oligodendroglia (CNS) and Schwann cells (PNS) generate myelin | | 4 different classes | Myelin forms a sheath around axons, providing electrical insulation | | of glia cells | and increasing speed and efficiency of communication | | _ | Regular gaps in the myelin are called Nodes of Ranvier and allow | | | signals to travel faster by jumping between gaps | | | Astrocytes | | | Most numerous glia in the brain – fill spaces between neurons and | | | vessels | | | Influence neuron growth and regulate chemical content of | | | extracellular space (can take ions from one region and move them to | | | another) | | | Also maintain blood-brain barrier and provide metabolic support for | | | neurons | | | Microglia | | | Macrophages – remove debris associated with dead/degenerating | | | cells | | | Fight inflammation within the brain | | | Ependymal cells | | | - apondymur cons | | | Epithelium-like cells that line fluid-filled ventricles in the brain and | |---|---| | | produce CSF | | Identify the factors that lead to movement of ions across a membrane | Concentration gradient Ions diffuse "down" their concentration gradient – from high to low concentration Electric field Ions move towards opposite charges At equilibrium there is no net ion flow across the membrane These movements create tension between the electrical pull and the concentration pull | | Describe the factors affecting an ionic equilibrium | Concentration ratio Electric charge Not the permeability | | potential Describe the factors affecting a cell's resting membrane potential | The cell's resting membrane potential is approximately -65mV Concentration ratio Electric charge Permeability of all ions | | Apply the Nernst equation and Goldmann equation | $E_{ion} = 2.303 \frac{RT}{zF} \log_{10} \frac{[ion]_{out}}{[ion]_{in}} \begin{array}{c} \text{z-ionic charge} \\ \text{T-temperature} \\ \text{R-universal gas constant} \end{array}$ $= \frac{61.5}{z} \log_{10} \frac{[ion]_{out}}{[ion]_{in}} \text{in mV} \begin{array}{c} \text{Note that equilibrium potential is independent} \\ \text{of } permeability \text{ and } ionic conductance.} \end{array}$ $V_m = 61.5 \log_{10} \frac{P_K[K]_{out} + P_{Na}[Na]_{out} + P_{Cl}[Cl]_{in}}{P_K[K]_{in} + P_{Na}[Na]_{in} + P_{Cl}[Cl]_{out}}$ $\bullet \text{What matters is the relative ionic permeability (an ion's permeability compared to the permeability of other ions)}$ | | Know how to estimate equilibrium and membrane potentials | Can estimate the membrane potential by knowing which ion is the most permeable | | Describe the function of the Na/K-ATPase (Na-K pump) | The pump actively transports Na and K across the membrane Requires ATP – pushed Na out of the cell and K into the cell against their concentration gradients Conformational changes When open intracellularly, the pump binds ATP and 3 intracellular Na ions ATP is hydrolysed, leading to phosphorylation and release of ADP The pump changes conformation, releasing Na into the extracellular space The pump binds 2 extra K ions, causing dephosphorylation and a second conformational change, returning it to its original position ATP binds and K ions are released 3 Na out, 2 K in | | Describe how selectivity and gating occurs in Na and K channels | Channels are selectively permeable due to physical shape and chemical properties Pore loop act as physical filter (due to close proximity) Charged domains on amino acid residues act as a chemical filter |