| 1                     |                                                                                                           |
|-----------------------|-----------------------------------------------------------------------------------------------------------|
| Types and             | Single gene disorders                                                                                     |
| prevalence of genetic | <ul> <li>There are many, but most are very rare (&lt;1 in 10,000)</li> </ul>                              |
| disorders in humans   | <ul> <li>Total incidence in newborns is approx. 1 in 100</li> </ul>                                       |
|                       | <ul> <li>Specific disorders may occur more frequently in certain</li> </ul>                               |
|                       | populations                                                                                               |
|                       | <ul> <li>Maintained due to heterozygote advantage or founder effect</li> </ul>                            |
|                       | <ul> <li>Most show recessive inheritance (one working copy is as good</li> </ul>                          |
|                       | as two)                                                                                                   |
|                       | <ul> <li>Some are dominant due to:</li> </ul>                                                             |
|                       | <ul> <li>Haploinsufficiency – loss of function in a dosage</li> </ul>                                     |
|                       | sensitive gene resulting in 50% of normal protein                                                         |
|                       | production not being enough to produce the wild type                                                      |
|                       | phenotype                                                                                                 |
|                       | <ul> <li>Dominant-negative mutations – loss of function</li> </ul>                                        |
|                       | mutations in which the protein is made but not                                                            |
|                       | functional, and inhibits the function of the normal                                                       |
|                       | protein in heterozygotes                                                                                  |
|                       | <ul> <li>Gain of function mutations – new function of the gene</li> </ul>                                 |
|                       | product, or the protein is always active, or there are                                                    |
|                       | increased levels of expression, or inappropriate                                                          |
|                       | expression                                                                                                |
|                       | <ul> <li>Chromosomal</li> </ul>                                                                           |
|                       | <ul> <li>Most caused by aneuploidy</li> </ul>                                                             |
|                       | <ul> <li>One chromosome is present more or less than normal</li> </ul>                                    |
|                       | <ul> <li>More sever for larger, autosomal chromosomes</li> </ul>                                          |
|                       | <ul> <li>Aneuploids very frequent among spontaneous miscarriages</li> </ul>                               |
|                       | (40-50% in the first trimester)                                                                           |
|                       | Chromosomal aberrations also occur – translocations,                                                      |
|                       | deletions, duplications                                                                                   |
|                       | Multifactorial     Part genetic part environmental evigin                                                 |
|                       | o Part genetic, part environmental origin                                                                 |
|                       | o Genetic component is usually polygenic (<1 gene)                                                        |
|                       | <ul> <li>Congenital abnormalities (e.g. spina bifida) or late onset (e.g.<br/>type I diabetes)</li> </ul> |
| Gene structure and    | A gene is a sequence of DNA that is required for the production of a                                      |
| expression            | functional product – either a polypeptide or a functional RNA                                             |
| chpression            | molecule                                                                                                  |
|                       | <ul> <li>Include the coding sequence as well as adjacent sequences required</li> </ul>                    |
|                       | for proper expression (e.g. promoters, terminators, regulatory                                            |
|                       | sequences)                                                                                                |
| 2                     | ,                                                                                                         |
| Determining           | Unaffected families who may carry the disease but have no affected                                        |
| inheritance patterns  | children won't come to genetic centres, thus won't be included in data                                    |
| •                     | when analysed – thus may not show in a Mendelian ratio                                                    |
|                       | Variable expressivity – may be difficult to assess the phenotype at the                                   |
|                       | extreme closest to normal, especially for behavioural phenotypes (e.g.                                    |
|                       | autism)                                                                                                   |
|                       | Variable penetrance – some individuals with the affected genotype do                                      |
|                       | not show the phenotype                                                                                    |
|                       | New mutations may arise                                                                                   |
|                       | Locus heterogeneity – mutations in several different genes may show                                       |
|                       | the same phenotype (often when mutations are in genes in                                                  |
|                       | biochemical pathways                                                                                      |

| Linkage analysis                  | • Linka                                                                                                                                                 | to groups corr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ocnond with individual                                                                                                                                                                                                   | chromocomoc                                                                         |          |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------|
| Linkage analysis                  | <ul> <li>Linkage groups correspond with individual chromosomes</li> <li>Genes may be mapped by following their joint segregation patterns in</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                          |                                                                                     |          |
|                                   | pedigr                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ed by following their joi                                                                                                                                                                                                | ne segregation pati                                                                 |          |
|                                   |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | by association with indi                                                                                                                                                                                                 | ividual chromosom                                                                   | nes in   |
|                                   |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | between humans and a                                                                                                                                                                                                     |                                                                                     |          |
|                                   | chrom                                                                                                                                                   | osomes varial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oly lost)                                                                                                                                                                                                                |                                                                                     |          |
|                                   |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | by in situ hybridisation                                                                                                                                                                                                 |                                                                                     | ense     |
|                                   |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | us in a chromosome spr                                                                                                                                                                                                   | ead                                                                                 |          |
|                                   | · •                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rences at two loci                                                                                                                                                                                                       |                                                                                     |          |
|                                   | • Linkaş                                                                                                                                                | ge phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A P Populaio                                                                                                                                                                                                             | n. Ah                                                                               |          |
|                                   |                                                                                                                                                         | Couping.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A B Repulsion                                                                                                                                                                                                            | и. <u>д. Б</u><br>а В                                                               |          |
|                                   | • The ch                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | over occurring between                                                                                                                                                                                                   |                                                                                     | tional   |
|                                   |                                                                                                                                                         | r distances ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                          | two loci is proport                                                                 | cionai   |
|                                   |                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0% (above this and the                                                                                                                                                                                                   | markers are on dif                                                                  | ferent   |
|                                   |                                                                                                                                                         | osomes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                          |                                                                                     |          |
| LOD scores                        | <ul> <li>Allows sufficient data to be collected from pedigrees (won't be able to</li> </ul>                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                          |                                                                                     |          |
|                                   |                                                                                                                                                         | ough offspring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g to analyse from one far                                                                                                                                                                                                | nily when using hu                                                                  | ıman     |
|                                   | data)  • Based                                                                                                                                          | on calculating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the chance of getting a                                                                                                                                                                                                  | cihchin accumina t                                                                  | the two  |
|                                   |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nation fraction of r (ran                                                                                                                                                                                                |                                                                                     | lile two |
|                                   |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | the chance of getting th                                                                                                                                                                                                 |                                                                                     | g the    |
|                                   |                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ınlinked (R=0.5)                                                                                                                                                                                                         | •                                                                                   | C        |
|                                   |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ds that the genes are lin                                                                                                                                                                                                |                                                                                     |          |
|                                   |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of this (Z), called the LO                                                                                                                                                                                               | D score (log of the                                                                 | odds)    |
|                                   | 0                                                                                                                                                       | Repeat for all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sinsnins                                                                                                                                                                                                                 |                                                                                     |          |
|                                   |                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                        | boggues thou are le                                                                 | ogg      |
|                                   |                                                                                                                                                         | Then add the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | individual LOD scores (                                                                                                                                                                                                  | because they are lo                                                                 | ogs,     |
|                                   | 0                                                                                                                                                       | Then add the they can be a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | individual LOD scores (<br>dded)                                                                                                                                                                                         | •                                                                                   | ogs,     |
|                                   | • E.g. if                                                                                                                                               | Then add the they can be a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | individual LOD scores (                                                                                                                                                                                                  | •                                                                                   | ogs,     |
|                                   | • E.g. if                                                                                                                                               | Then add the they can be ad 7 offspring all gree 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | individual LOD scores (<br>dded)<br>show parental inherita                                                                                                                                                               | nce                                                                                 | ogs,     |
|                                   | • E.g. if                                                                                                                                               | Then add the they can be ad 7 offspring all gree 1:  chance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | individual LOD scores (dded)<br>show parental inherita<br>odds (θ)                                                                                                                                                       | log <sub>10</sub> odds (Z)                                                          | ogs,     |
|                                   | • E.g. if  Pedi                                                                                                                                         | Then add the they can be ad 7 offspring all gree 1:  chance (1 - r) <sup>7</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | individual LOD scores (<br>dded)<br>show parental inherita                                                                                                                                                               | nce                                                                                 | ogs,     |
|                                   | • E.g. if  Pedi  r                                                                                                                                      | Then add the they can be a force 1:  chance (1 - r) <sup>7</sup> 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | individual LOD scores (dded) show parental inheritate  odds (θ) chance r/(chance r= 0.5)                                                                                                                                 | log <sub>10</sub> odds (Z) LOD 2.11                                                 | ogs,     |
|                                   | • E.g. if  Pedi  r  0.0 0.1                                                                                                                             | Then add the they can be a 7 offspring all gree 1:  chance (1 - r) <sup>7</sup> 1.000 0.478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | individual LOD scores (dded) show parental inheritate  odds (θ) chance r/(chance r= 0.5)  128 61.2                                                                                                                       | log <sub>10</sub> odds (Z)<br>LOD<br>2.11<br>1.79                                   | ogs,     |
|                                   | • E.g. if  Pedi  r  0.0 0.1 0.2                                                                                                                         | Then add the they can be ad 7 offspring all gree 1:  chance (1 - r) <sup>7</sup> 1.000 0.478 0.210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | individual LOD scores (dded) show parental inheritation  odds (θ) chance r/(chance r= 0.5)  128 61.2 26.8                                                                                                                | log <sub>10</sub> odds (Z)<br>LOD<br>2.11<br>1.79<br>1.43                           | ogs,     |
|                                   | • E.g. if  Pedi  r  0.0 0.1                                                                                                                             | Then add the they can be a 7 offspring all gree 1:  chance (1 - r) <sup>7</sup> 1.000 0.478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | individual LOD scores (dded) show parental inheritate  odds (θ) chance r/(chance r= 0.5)  128 61.2                                                                                                                       | log <sub>10</sub> odds (Z)<br>LOD<br>2.11<br>1.79                                   | ogs,     |
|                                   | • E.g. if  Pedi  r  0.0 0.1 0.2 0.3                                                                                                                     | Then add the they can be a form offspring all gree 1:  chance (1 - r) <sup>7</sup> 1.000 0.478 0.210 0.082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | individual LOD scores (dded) show parental inheritate  odds (θ) chance r/(chance r= 0.5)  128 61.2 26.8 10.5                                                                                                             | log <sub>10</sub> odds (Z)<br>LOD<br>2.11<br>1.79<br>1.43<br>1.02                   | ogs,     |
|                                   | • E.g. if  Pedi  r  0.0 0.1 0.2 0.3 0.4 0.5                                                                                                             | Then add the they can be as 7 offspring all gree 1:  chance (1 - r) <sup>7</sup> 1.000 0.478 0.210 0.082 0.028 0.0078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | individual LOD scores (dded) show parental inheritate  odds (θ) chance r/(chance r= 0.5)  128 61.2 26.8 10.5 3.58 1.00                                                                                                   | log <sub>10</sub> odds (Z)<br>LOD<br>2.11<br>1.79<br>1.43<br>1.02<br>0.554          | ogs,     |
|                                   | • E.g. if  Pedi  r  0.0 0.1 0.2 0.3 0.4 0.5                                                                                                             | Then add the they can be at 7 offspring all gree 1:  chance (1 - r) <sup>7</sup> 1.000 0.478 0.210 0.082 0.028 0.0078  st odds indicat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | individual LOD scores (dded) show parental inheritate  odds (θ) chance r/(chance r= 0.5)  128 61.2 26.8 10.5 3.58 1.00  te the most likely                                                                               | log <sub>10</sub> odds (Z)<br>LOD<br>2.11<br>1.79<br>1.43<br>1.02<br>0.554          | ogs,     |
| 3                                 | • E.g. if  Pedi  r  0.0 0.1 0.2 0.3 0.4 0.5                                                                                                             | Then add the they can be as 7 offspring all gree 1:  chance (1 - r) <sup>7</sup> 1.000 0.478 0.210 0.082 0.028 0.0078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | individual LOD scores (dded) show parental inheritate  odds (θ) chance r/(chance r= 0.5)  128 61.2 26.8 10.5 3.58 1.00  te the most likely                                                                               | log <sub>10</sub> odds (Z)<br>LOD<br>2.11<br>1.79<br>1.43<br>1.02<br>0.554          | ogs,     |
| 3 Identifying human               | • E.g. if  Pedi  r  0.0 0.1 0.2 0.3 0.4 0.5 • Highes • Z score                                                                                          | Then add the they can be a a 7 offspring all gree 1:  chance (1 - r) <sup>7</sup> 1.000 0.478 0.210 0.082 0.028 0.0078  st odds indicate must be high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | individual LOD scores (dded) show parental inheritate  odds (θ) chance r/(chance r= 0.5)  128 61.2 26.8 10.5 3.58 1.00  te the most likely                                                                               | log <sub>10</sub> odds (Z)<br>LOD<br>2.11<br>1.79<br>1.43<br>1.02<br>0.554          | ogs,     |
| 3 Identifying human disease genes | • E.g. if  Pedi  r  0.0 0.1 0.2 0.3 0.4 0.5 • Highes • Z score                                                                                          | Then add the they can be ad 7 offspring all gree 1:  chance (1 - r) <sup>7</sup> 1.000 0.478 0.210 0.082 0.028 0.0078  st odds indicate must be high onal cloning Identifying a green are as a second side of the control of the  | individual LOD scores (dded) show parental inheritate  odds (θ) chance r/(chance r= 0.5)  128 61.2 26.8 10.5 3.58 1.00  te the most likely ter than 3  gene after mapping it                                             | log <sub>10</sub> odds (Z)<br>LOD<br>2.11<br>1.79<br>1.43<br>1.02<br>0.554<br>0.000 |          |
| Identifying human                 | • E.g. if  Pedi  r  0.0 0.1 0.2 0.3 0.4 0.5  • Highes • Z score • Position                                                                              | Then add the they can be a a 7 offspring all gree 1:  chance (1 - r) <sup>7</sup> 1.000 0.478 0.210 0.082 0.028 0.0078  st odds indicate must be high onal cloning Identifying a green they are the more ext                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | individual LOD scores (dded) show parental inheritate  odds (θ) chance r/(chance r= 0.5)  128 61.2 26.8 10.5 3.58 1.00  the the most likely ther than 3  gene after mapping it tensive the mapping, the                  | log <sub>10</sub> odds (Z)<br>LOD<br>2.11<br>1.79<br>1.43<br>1.02<br>0.554<br>0.000 |          |
| Identifying human                 | • E.g. if  Pedi  r  0.0 0.1 0.2 0.3 0.4 0.5  • Highes • Z scor                                                                                          | Then add the they can be ac 7 offspring all gree 1:  chance (1 - r) <sup>7</sup> 1.000 0.478 0.210 0.082 0.028 0.0078  st odds indicate must be high point cloning Identifying a gree in the more extragion, the ear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | individual LOD scores (dded) show parental inheritate  odds (θ) chance r/(chance r= 0.5)  128 61.2 26.8 10.5 3.58 1.00  the the most likely the mapping it the ensive the mapping, the asier it is                       | log <sub>10</sub> odds (Z)<br>LOD<br>2.11<br>1.79<br>1.43<br>1.02<br>0.554<br>0.000 |          |
| Identifying human                 | • E.g. if  Pedi  r  0.0 0.1 0.2 0.3 0.4 0.5  • Highes • Z score  • Steps                                                                                | Then add the they can be ad 7 offspring all gree 1:  chance (1 - r) <sup>7</sup> 1.000 0.478 0.210 0.082 0.028 0.0078  st odds indicate must be high lentifying a gree in positional closural cl | individual LOD scores (dded) show parental inheritate  odds (θ) chance r/(chance r= 0.5)  128 61.2 26.8 10.5 3.58 1.00  te the most likely ter than 3  gene after mapping it tensive the mapping, the asier it is loning | log <sub>10</sub> odds (Z) LOD  2.11 1.79 1.43 1.02 0.554 0.000                     | date     |
| Identifying human                 | • E.g. if  Pedi  r  0.0 0.1 0.2 0.3 0.4 0.5  • Highes • Z scor                                                                                          | Then add the they can be ad 7 offspring all gree 1:  chance (1 - r) <sup>7</sup> 1.000 0.478 0.210 0.082 0.028 0.0078  st odds indicate must be high positional cloning are in positional clothain the second contains  | odds (θ) chance r/(chance r= 0.5)  128 61.2 26.8 10.5 3.58 1.00  te the most likely ter than 3  gene after mapping it tensive the mapping, the sier it is loning quence of all the DNA in                                | log <sub>10</sub> odds (Z) LOD  2.11 1.79 1.43 1.02 0.554 0.000                     | date     |
| Identifying human                 | • E.g. if  Pedi  r  0.0 0.1 0.2 0.3 0.4 0.5  • Highes • Z score  • Steps                                                                                | Then add the they can be ac 7 offspring all gree 1:  chance (1 - r) <sup>7</sup> 1.000 0.478 0.210 0.082 0.028 0.0078  st odds indicate must be high positional cloning Identifying a gree in positional clottain the second obtain the second obtain the second in the second obtain the second ob | odds (θ) chance r/(chance r= 0.5)  128 61.2 26.8 10.5 3.58 1.00  te the most likely ter than 3  gene after mapping it tensive the mapping, the sier it is loning quence of all the DNA in the genes in the region        | log <sub>10</sub> odds (Z) LOD  2.11 1.79 1.43 1.02 0.554 0.000                     | date     |
| Identifying human                 | • E.g. if  Pedi  r  0.0 0.1 0.2 0.3 0.4 0.5  • Highes • Z scor  • Steps •                                                                               | Then add the they can be ac 7 offspring all gree 1:  chance (1 - r) <sup>7</sup> 1.000 0.478 0.210 0.082 0.028 0.0078  st odds indicate must be high positional cloning Identifying a gree in positional clottain the second obtain the second obtain the second in the second obtain the second ob | odds (θ) chance r/(chance r= 0.5)  128 61.2 26.8 10.5 3.58 1.00  te the most likely ter than 3  gene after mapping it tensive the mapping, the sier it is loning quence of all the DNA in                                | log <sub>10</sub> odds (Z) LOD  2.11 1.79 1.43 1.02 0.554 0.000                     | date     |

|                | o Confirm through animal models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Obtaining the DNA sequence – chromosome walking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                | Genomic DNA subjected to partial restriction digest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                | Generates large fragments of overlapping DNA sequences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | Cloned into a vector – makes a gneomic library  Start by identifying a clone that everlans one of the markers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | <ul> <li>Start by identifying a clone that overlaps one of the markers<br/>that identify the candidate region</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                | <ul> <li>Use this first clone to probe the library and identify<br/>overlapping DNA fragments</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | Identifying all the genes in the region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | o Gene prediction – look for open reading frames                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | <ul> <li>Zoo blots – probe southern blot of genomic DNA from other</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | species with human probes (sequences part of genes are more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                | likely to be conserved)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | <ul> <li>CpG islands – clusters of unmethylated CpG dinucleotides</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                | found near many transcription initiation sites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | <ul> <li>Exon trapping – clone random fragments from the region of</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | interest into a special vector that is engineered so that a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                | splicing reaction will occur if the cloned fragment contains and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | intron/exon boundary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                | Prioritise the genes to obtain candidate genes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | <ul> <li>Perform BLAST searches with predicted genes</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                | <ul> <li>Look for appropriate expression</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                | Confirming the candidate gene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | <ul> <li>Mutation screening in affected individuals</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | Rescue the phenotype                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| _              | <ul> <li>Production of an animal model of the disease</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Human mutation | Types of single gene mutations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | Base substitution – single base change  Transition – surjection and by another.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                | <ul> <li>Transition – pyrimidine raplaced by another<br/>pyrimidine (C/T) or purine by purine (G/A)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | <ul> <li>Transversion – purine replaced by pyrimidine (or vice</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                | versa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                | versa)  o Insertions or deletions – short DNA sequences may be deleted or added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                | versa)  o Insertions or deletions – short DNA sequences may be deleted or added  • Effects of single gene mutations on gene products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                | versa)  o Insertions or deletions – short DNA sequences may be deleted or added  • Effects of single gene mutations on gene products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                | versa)  Insertions or deletions – short DNA sequences may be deleted or added  Effects of single gene mutations on gene products  Within coding sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | versa)  Insertions or deletions – short DNA sequences may be deleted or added  Effects of single gene mutations on gene products  Within coding sequence  Silent mutations – no alteration to amino acid sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                | versa)  Insertions or deletions – short DNA sequences may be deleted or added  Effects of single gene mutations on gene products  Within coding sequence  Silent mutations – no alteration to amino acid sequence (production may be slowed down)  Missense mutations – amino acid does change  Nonsense mutation – codon changes to a stop codon                                                                                                                                                                                                                                                                                                                                                                            |
|                | versa)  Insertions or deletions – short DNA sequences may be deleted or added  Effects of single gene mutations on gene products  Within coding sequence  Silent mutations – no alteration to amino acid sequence (production may be slowed down)  Missense mutations – amino acid does change  Nonsense mutation – codon changes to a stop codon  Frameshift mutation – insertion or deletion of 1-2                                                                                                                                                                                                                                                                                                                        |
|                | versa)  Insertions or deletions – short DNA sequences may be deleted or added  Effects of single gene mutations on gene products  Within coding sequence  Silent mutations – no alteration to amino acid sequence (production may be slowed down)  Missense mutations – amino acid does change  Nonsense mutation – codon changes to a stop codon  Frameshift mutation – insertion or deletion of 1-2 nucleotides, changing the reading frame                                                                                                                                                                                                                                                                                |
|                | versa)  Insertions or deletions – short DNA sequences may be deleted or added  Effects of single gene mutations on gene products  Within coding sequence  Silent mutations – no alteration to amino acid sequence (production may be slowed down)  Missense mutations – amino acid does change  Nonsense mutation – codon changes to a stop codon  Frameshift mutation – insertion or deletion of 1-2 nucleotides, changing the reading frame  In non-coding regions                                                                                                                                                                                                                                                         |
|                | versa)  Insertions or deletions – short DNA sequences may be deleted or added  Effects of single gene mutations on gene products  Within coding sequence  Silent mutations – no alteration to amino acid sequence (production may be slowed down)  Missense mutations – amino acid does change  Nonsense mutation – codon changes to a stop codon  Frameshift mutation – insertion or deletion of 1-2 nucleotides, changing the reading frame  In non-coding regions  Promoter regions – may increase or decrease                                                                                                                                                                                                            |
|                | versa)  Insertions or deletions – short DNA sequences may be deleted or added  Effects of single gene mutations on gene products  Within coding sequence  Silent mutations – no alteration to amino acid sequence (production may be slowed down)  Missense mutations – amino acid does change  Nonsense mutation – codon changes to a stop codon  Frameshift mutation – insertion or deletion of 1-2 nucleotides, changing the reading frame  In non-coding regions  Promoter regions – may increase or decrease transcription                                                                                                                                                                                              |
|                | versa)  Insertions or deletions – short DNA sequences may be deleted or added  Effects of single gene mutations on gene products  Within coding sequence  Silent mutations – no alteration to amino acid sequence (production may be slowed down)  Missense mutations – amino acid does change  Nonsense mutation – codon changes to a stop codon  Frameshift mutation – insertion or deletion of 1-2 nucleotides, changing the reading frame  In non-coding regions  Promoter regions – may increase or decrease transcription  Splice recognition sites – pre-mRNA may not be spliced                                                                                                                                      |
|                | versa)  Insertions or deletions – short DNA sequences may be deleted or added  Effects of single gene mutations on gene products  Within coding sequence  Silent mutations – no alteration to amino acid sequence (production may be slowed down)  Missense mutations – amino acid does change  Nonsense mutation – codon changes to a stop codon  Frameshift mutation – insertion or deletion of 1-2 nucleotides, changing the reading frame  In non-coding regions  Promoter regions – may increase or decrease transcription  Splice recognition sites – pre-mRNA may not be spliced correctly                                                                                                                            |
|                | versa)  Insertions or deletions – short DNA sequences may be deleted or added  Effects of single gene mutations on gene products  Within coding sequence  Silent mutations – no alteration to amino acid sequence (production may be slowed down)  Missense mutations – amino acid does change  Nonsense mutation – codon changes to a stop codon  Frameshift mutation – insertion or deletion of 1-2 nucleotides, changing the reading frame  In non-coding regions  Promoter regions – may increase or decrease transcription  Splice recognition sites – pre-mRNA may not be spliced correctly  S'UTR/3'UTR – alteration in ability of mRNA to be                                                                         |
|                | versa)  Insertions or deletions – short DNA sequences may be deleted or added  Effects of single gene mutations on gene products  Within coding sequence  Silent mutations – no alteration to amino acid sequence (production may be slowed down)  Missense mutations – amino acid does change  Nonsense mutation – codon changes to a stop codon  Frameshift mutation – insertion or deletion of 1-2 nucleotides, changing the reading frame  In non-coding regions  Promoter regions – may increase or decrease transcription  Splice recognition sites – pre-mRNA may not be spliced correctly  SiUTR/3'UTR – alteration in ability of mRNA to be translated or in mRNA stability                                         |
|                | versa)  Insertions or deletions – short DNA sequences may be deleted or added  Effects of single gene mutations on gene products  Within coding sequence  Silent mutations – no alteration to amino acid sequence (production may be slowed down)  Missense mutations – amino acid does change  Nonsense mutation – codon changes to a stop codon  Frameshift mutation – insertion or deletion of 1-2 nucleotides, changing the reading frame  In non-coding regions  Promoter regions – may increase or decrease transcription  Splice recognition sites – pre-mRNA may not be spliced correctly  S'UTR/3'UTR – alteration in ability of mRNA to be translated or in mRNA stability  Effects of a mutation on gene function |
|                | versa)  Insertions or deletions – short DNA sequences may be deleted or added  Effects of single gene mutations on gene products  Within coding sequence  Silent mutations – no alteration to amino acid sequence (production may be slowed down)  Missense mutations – amino acid does change  Nonsense mutation – codon changes to a stop codon  Frameshift mutation – insertion or deletion of 1-2 nucleotides, changing the reading frame  In non-coding regions  Promoter regions – may increase or decrease transcription  Splice recognition sites – pre-mRNA may not be spliced correctly  SiUTR/3'UTR – alteration in ability of mRNA to be translated or in mRNA stability                                         |