MBLG2071 2016

L2 - Introduction to the structure of the genome

Focus of MBLG2071 will be on eukaryotes

Review chemical composition and structure of DNA

DNA is a biopolymer made up of nucleotides (sugar, phosphate & base) Nucleotides joined together by phosphodiester bonds

DNA double stranded and nucleotides form base pairs

• Purines (2 rings) pair with Pyrimidines (1 ring)

$$A = T & G = C$$

Complimentary bp → antiparallel

Appreciate the need for DNA compaction

Prokaryote

- E.coli \rightarrow one long DNA molecule 1.3mm in length
 - → DNA organised into 50-100 independently supercoiled loops
 - → RNA & proteins contribute to folded structure = "folded genome"

Eukaryotes

Human cell has 6x10⁹ bp of DNA, each bp has a thickness of 3.4Å (3.4x10⁻¹⁰)

- → Total length of DNA ~2m
- Packaging begins with the formation of **nucleosome**
- DNA wound around small proteins called $\boldsymbol{histones}$

Histones

- Have lysine and arginine residues
- +ve at pH 7

Understand at molecular level the packaging of DNA into chromosomes

There 5 classes of histone (H1, H2A, H2B, H3, H4)

- Core histones = H2A, H2B, H3, H4
 - Dimers of each of these together form an octamer → makes up protein core of the nucleosome
- **Core DNA** = \sim 147 bp of DNA that wrap around the core histone
- Nucleosome = DNA + Histone core

The N/C terminal of octamer histone protrude out of the core

MBLG2071 2016

Linking nucleosomes and H1

Adjacent nucleosomes are linked by 20-60 bp DNA = **linker DNA**

Histone H1 interact with the linker DNA and part of the core DNA → **linker histone**

- Induces tighter wrapping of DNA in nucleosome
- Formation of 30nm fibre

Higher order packaging not known completely

Summary of packaging

- 1. Each chromosome contains a single molecule of DNA
- 2. DNA wrapped around histone core octamer to form nucleosomes
- 3. Nucleosomes compacted in 30nm fibre by histone H1
- 4. Higher order packaging not completely understood => loops of DNA held together by nuclear scaffold

Learn about the features of chromosomes

Chromosome = complex of DNA, histones and non-histone proteins

→ Several features allow maintenance & transmission to next generation

MBLG2071 2016

Origin of replication

- Specific genomic DNA sequences direct the initiation of DNA rep.
- Bacterial chromosome had 1 origin of replication
- Eukaryotes have origins of replication every 30-40 kbp throughout the length each chromosome

Centromere

- Responsible for segregation of chromosomes at mitosis & meiosis
- Contain large amounts of repetitive sequences
- Reference point/landmark → define the position of markers on a chromosome
- Divides chromosome into 2 arms
 - Arms are not the same length, one long & one short
 - Short arm = \mathbf{p} (petit)
 - Long arm = \mathbf{q}

Telomere

- Located at the ends of chromosomes
- Consists of simple repeating structure
- Allow ends of chromosomes to be replicated

Chromosome stains/staining techniques

- Giemsa
 - Chemical preventing mitotic spindle from pulling apart
 - IDing chromosome and detecting abnormality in chromosome
 - G-bands = reference point of locating gene, determine position → create chromosomal map

p21 centromere 012 013 g22 q23 q24 4 g25 q26 g27

Feulgen

- IDing chromosomal material/DNA in cell
- Dark staining = heterochromatin, region of dense DNA packaging, consisting of multiple repeats
- Weak stain = euchromatin, DNA loosely packaged, active in transcription

Learn how DNA packaging relates back to phenotypic function of DNA

- Even in euchromatic regions, DNA is associated with histones
- How does transcription factor + other regulatory proteins gain access to DNA?
- Association of DNA with histone octamer is dynamic
- Non-covalent interaction → release and rebinding

MBLG2071 2016

Chromatin remodelling → moving nucleosomes

- Performed by large protein complexes = nucleosome remodelling complexes
- Derive energy from hydrolysis of ATP
- 2 types of modification
 - Sliding
 - Displacement/ejection

<u>Chromatin modification</u> → adding/removing chemical groups from histone proteins

 Each of the histone proteins in the core octamer has an N-terminal tail, which can be post-translationally modified → determines how accessible the DNA is.

Histone **acetylation** and **deacetylation** are processes by which lysine on the N-terminal tail protruding from the histone core of the nucleosome are acetylated and deacetylated as part of gene regulation

- Histone acetylation controlled by histone acetyl transferase (HAT). It adds acetyl group to lysine residue, causing it to go from +ve charge to neutral. This in turn cause uncoiling of the −ve DNA (since lysine is no longer +ve), allowing genes to be accessible to transcription factors → become euchromatic, able to synthesis new DNA
- Likewise, histone deacetylase (HDAC) removes the acetyl group → lysine becomes +ve again, DNA coils around the histone once again. → heterochromatin (dense DNA packaged region)