CVEN3501 Notes

Hydrological Cycle

- More than 70% of the Earth is covered by water.
- The **hydrosphere** contains about 1.36 x 10⁹ km³ of water
- Only substance (on Earth) that can exist in all states
- Maximum density in liquid form (not solid).
- Conducts heat & has a high specific heat.

Distribution

- Oceans make up ~ 70% of the Earth's surface.
- Solar radiation powers the global evaporation process.
- 86% of the Earth's evaporation occurs over the oceans; 14% occurs over land
- Of the total amount evaporated, P returns > 80% to the oceans and < 20% to land.
- Runoff sends 7% of the land based P back to the ocean to balance the processes of ET and P.

Residence times

- Amount of time that water 'stays' in a storage component can be calculated by dividing the total volume (m³) by the flux rate (m³.s⁻¹).

- Water is renewed in rivers once every 16 days. Water in the atmosphere is <u>completely</u> replaced every 8 days, much longer in lakes, glaciers etc.

Stefan-Boltzmann Law

- Perfect emitter

 \circ E = σT^4

- Relationship says that a small increase in temperature results in a large amount of radiation being emitted.

Wein's Law

- There is an inverse relationship between the wavelength of the peak emission of a blackbody and its temperature, wavelength shorter as temperature increases

 $-\lambda_{m}T = 2877 \mu m K$

- Light from the sun: temp $^{\sim}$ 6000K, λ $^{\sim}$ 0.5 μm

- Light from a campfire: temp \sim 1500K, $\lambda \sim$ 2 μ m

Units

- Joule – basic unit of energy

o 1 Joule work done to move 1 Newton by 1 metre

o (lift a small apple by one metre)

Power – energy per time

1 Watt = 1 Joule per second

- Flux – power per area

Radiation Balance

$$S = S_o \left(\frac{r_o}{D}\right)^2$$

- S is the radiation at Earth, S_o is the radiation leaving the sun, r_o is the radius of the sun, D is the distance from the earth to the sun

Albedo

- Albedo = reflected solar radiation/incoming solar radiation
- On Earth, albedo = 30%
- Stefan Boltzmann relationship
- $E = \sigma \epsilon T_e^4$
 - o E is the energy flux in W/m²
 - o e is the emissivity of the surface, 1 for a blackbody
 - \circ σ is constant
 - o T is temp in Kelvin

Global radiation balance

Energy absorbed by Earth = Energy emitted by Earth

Energy absorbed by Earth = Energy emitted by Earth

This is the radiation balance at the Earth's surface

$$(S/4)*(1-\alpha) + \sigma \varepsilon T_A^4 = \sigma \varepsilon T_S^4$$

Seasonal Variation

- Changes in the position of the Earth's axis cause the location of the Sun to wander 47° across our skies.
- These changes have a direct effect on the **intensity** of solar radiation incident upon the surface.

Energy Distribution