Computing Notes

Computer Architecture

- A computer is an electronic machine that accepts data (input), manipulates the data according to some rules (process), produce results (output) and stores the results for future use (storage).
- Use stored-program concept load data from memory and execute

Parallel Computing

- Simultaneous execution of the same programmed task on multiple processors in order to obtain faster results.
- Same instruction all processors execute same instructions at same time
- Multiple instruction each process executes different instructions
- Many algorithms are sequential, must be redesigned for parallel hardware, and careful programming required in parallel system
- In general, easy to build parallel hardware but difficult to design parallel software

Distributed/Grid Computing

- Single task executed on more than one computer

- Aim to solve massive computational problems using large numbers of **heterogeneous** computers

Computer clusters

- Group of connected computers, uses **homogeneous** hardware
- Increased reliability and performance
- Popular for computationally expensive problems like drug discovery, financial modelling etc.
- Clusters made of dedicated hardware, whereas distributed system not dedicated hardware

Embedded System

- Special purpose system design to perform a few dedicated functions
- Handheld computers share elements with embedded systems but not true
- Examples:
 - Audio like mp3 players and telephone switches for interactive voice response systems
 - Avionics, such as flight control hardware/software and other integrated systems in aircraft and missiles
 - o Cellular telephones and telephone switches
 - o Industrial controllers for remote machine operation
 - o Engine controllers and antilock brake controllers for cars
 - Home automation products , such as thermostats, air conditioners, sprinklers, and security monitoring systems
 - Household appliances, including microwave ovens, washing machines, TV sets, DVD players and recorders, digital musical instruments
 - Medical equipment (especially those embedded in people!)
 - Computer peripherals such as routers and printers
- Designed for specific task, not general purpose
- Limited hardware resources
- Software called firmware and stored in read-only memory rather than a disk drive
- Very reliable and can recover if error occurs

RFID

- Radio Frequency Identification
- Identification method, relying on storing and retrieving data using RFID tags
- Most RFID tags contain at least two parts.
 - One is an integrated circuit for storing and processing information, modulating and demodulating a (RF) signal, and other specialized functions.
 - The second is an antenna for receiving and transmitting the signal.
- A technology called chip less RFID allows for discrete identification of tags without an
 integrated circuit, thereby allowing tags to be printed directly onto assets at a lower cost
 than traditional tags.
- Passive tags with no internal power source
- Active or Semi-passive require a power source
- Active tags
 - More reliable
 - Range can be hundreds of metres, and have larger memories, but bigger and more expensive
 - Used in passports, transportation, product tracking etc.
- Issues
 - o Lack of standards frequencies in USA incompatible with Europe
 - Security
 - o Privacy concerns could gather sensitive data about individual

Digital Revolution and Network Computing

- Each 1 called bit, byte is a group of 8 bits
- Original ASCII used 7 bits and then 8 bits, but could not represent all languages
- 16-bit representation, called Unicode, handles all languages, and is widely used
- Can encode everything, including sounds and pictures, into bytes

Encoding sound

- Takes samples at intervals of the analogue values, and gives a digital value
- Analogue can only be approximated, parameters are
 - Accuracy of value representation (Quantisation)

- How often samples are taken
- Sampling rate should be at least twice the frequency of any perceptible variation in value
- If sampling rate too low, called aliasing

Images and Video

- Aim to divide an image into pixels, and encode each pixel using 3 8-bit values, one for red, green and blue
- Often use compression to store and transmit images
- Compression can either be lossless or lossy
 - Lossless png, tiff
 - Lossy JPEG, Mp3 etc
- Lossless compression
 - Use sophisticated algorithms but all depend on redundancy, or repeated symbols in the data, can't compress random data
 - Use Run-Length encoding, replace run of letters with symbol
- Lossy Compression
 - Eye cannot distinguish fine detail
 - Uses discrete cosine transform

Encoding and Decoding

The Internet

- Connection of computers to a large network
- Began in 1960s as military system