WEEK 1

Variables into cases = wide to long - varstocases, long to wide casestovars

Wide = lots of variables (each person represented once), Long = person represented on multiple rows)

Keep syntax for variables don't want to change (e.g. age and gender, each person only has one, these aren't 4 variables that happen to have same value)

Index variable will tell us which subscales each row is

= active data set. Asterix () = active dataset

Dataset activate demog = Which one is going into which. Anxiety is going into dem break=sex - will calculate means separately for males and females

nmv = no. of missing values - compute nmv=nmiss(weight)

nvv = number of valid values compute nvv=nvalid(weight)

Compute does on case by case basis, does for each person not dataset as whole

If compute $(X_1+X_2+X_3+X_4)/4$ will exclude missing cases

If compute variable $mean(X_1, X_2, X_3, X_4)$ will include missing cases

Compute target = f.n(varlist) → the ".n" indicates valid values on at least n amount of variables e.g. mean.1 = valid values on at least 1 variable
Importing data → readnames on; tells SPSS excel file top row is var name, not 1st line of data

Recode reverse scored items

Compute item2r = 7 – item2 (subtract original value from max score +1) - correlations become +. E.g., if the scale range is 1-6 then calculate: New = 7 – old Recode item2 (6=1)(5=2)(4=3(3=4)(2=5)(1=6) into item2rr – less efficient but same

Cronbachs alpha (reliability) >.8 is desirable - changes after recoding!

Compute ngt10 = sum(afees>10, aees>10, dees>10, tees>10).

- Computes score as true/false, if have score > 10 will get a 1 for that score, so if person had value > 10 on every scale they would get score of 4

Need **Temporary** before **select if** otherwise will delete stuff out of dataset. **Recode tees (lo thru 10=0)(10 thru 20=1),** person with 10.0 will be in first group not general.

Compute tees5 = trunc(tees/10) \rightarrow Trunc = 9.999 in 1st group then 10.0 in 2nd, in recode takes 10 first time it sees it, whereas here goes up to 9.9999

Random allocation to groups

Compute runi = rv.uniform(0,1) → randomly assign to groups variable 0 or 1 Compute alloc = runi >0.5. → Allocating to two groups. If over .5 they are put in 1

Getting scores of 1-6 to be from 0-5 Do repeat x=item1 to item6 /v = newitem1 to newitem6 compute v=x-1 end repeat. Exe.

WEEK 2 – SAMPLE SIZE AND POWER

Type I	Our test is sig	Reject H ₀ when	Ctrl by choice	Pr(type
error	(says is effect) but	its true in pop	of sig level ($\alpha =$	I error)
	no effect in		sig level)	$=\alpha$
	population			
Type II	Our test is not sig	Accept H ₀	Ctrl by sample	Pr(type
error	(says no effect)	when its false in	size & power.	II err)
	but effect in pop	pop	> ss $=$ $>$ power	= β

Power = 1- β = probability of not making a type II error / ability to detect effect when there is one). Increased power leads to <u>reduced</u> prob of making type II error = $(1-\beta) > 0.8$ is adequate, > 0.9 is better

- p-value $> \alpha$ (sig level)- possible power problem