NEUROLOGICAL AND CARDIOPULMONARY PHYSIOTHERAPY

L1 RESPIRATORY FAILURE AND INTUBATION

Respiratory Failure:

Definition:

 When the patient loses the ability to ventilate adequately or to provide sufficient oxygen to the blood and systemic organs

Types:

- Hypoxaemic:
 - Type 1, 0₂ movement, regional ventilation
 - $PaO_2 < 60$ mmHg
 - PaCO₂ << 42mmHg (without hypercapnia)
 - Lung disease is severe enough to interfere with oxygen exchange
- Hypercapnic:
 - Type 2 pump, CO₂ movement, ineffective ventilation, reduced overall ventilation
 - $PaCO_2 > 50mmHg$
 - The respiratory system pump is inadequate and cannot maintain ventilation to eliminate the CO₂ produced by metabolism
- Respiratory failure can also be acute, chronic or acute on chronic
 - Acute= rapid, short course and pronounced symptoms
 - Chronic= long duration of poor ABG values with compensation
 - Acute on chronic= worsened situation such as due to infection

Important Terms:

- \dot{V}_E = minute ventilation = RR x V_T
- Vd = dead space (non gas exchange area)
- \dot{V}_D = dead space ventilation = RR x Vd
- $\dot{\mathbf{V}}_{\mathbf{A}}$ = alveolar ventilation = $(\mathbf{V}_{\mathbf{T}} - \mathbf{V}\mathbf{d}) \times \mathbf{R}\mathbf{R}$ = $\dot{\mathbf{V}}_{\mathbf{F}} - \dot{\mathbf{V}}_{\mathbf{D}}$

- What is the V_E , V_A & does the $CO_2 \uparrow$ or \downarrow
- Normal male
 - $\label{eq:vd} \begin{array}{ll} ^{\circ} \ Vd = \text{100 ml, } V_T = \text{500 ml, } RR = \text{12} \\ ^{\circ} \ \mathring{V}_E = & \text{6L/min} & V_A = \text{4.8L/min} & CO_2 = \text{Normal} \end{array}$
- Post abdominal surgery
 - $^{\circ}$ Vd = 100 ml, V_T = 250 ml, RR = 24
 - $^{\circ}$ $\overset{\circ}{\mathrm{V}}_{\mathrm{E}}$ = 6L/min $\overset{\circ}{\mathrm{V}}_{\mathrm{A}}$ = 3.6L/min $\overset{\circ}{\mathrm{CO}}_{2}$ = Increased
- DBE with the physiotherapist
 - □ Vd = 100 ml, V_T = 750 ml, RR = 8
 - $^{\circ}$ \mathring{V}_{E} = 6L/min V_{A} = 5.2L/min CO_{2} = Decreased
- PE 2 weeks post discharge
- Vd = 200 ml, V_T = 500 ml, RR = 12
- $^{\circ}$ $\overset{\circ}{V}_{\mathbb{R}}$ = 6L/min $\overset{\circ}{V}_{\mathbb{A}}$ = 3.6L/min $\overset{\circ}{CO}_{2}$ = Increased

Mechanisms and Causes:

- Hypoxaemic respiratory failure
 - Reduced gas going to areas of perfusion (low lung volume)
 - No gas going to areas with perfusion (lobar collapse)
 - Diffusion impairment (pulmonary fibrosis)
 - Gas going to an area with reduced perfusion
- Hypercapnic respiratory failure:
 - Depressed drive (brainstem injury, opiate overdose)
 - Impaired neuromuscular function (cervical spinal cord injury, myopathy, neuropathy respiratory muscle dysfunction)

- Increased respiratory load (increased airway resistance, altered chest wall compliance, decreased lung compliance)

Clinical Manifestations:

- Hypoxaemia:
 - Decreased mental acuity (PaO₂ <40-50mmHg)
 - Agitation followed by somnolence
 - Dyspnoea
 - Increase RR, change in pattern of breathing
 - Long term → organ failure- renal and brain damage
- Hypercapnia:
 - Depends on rate of rise of CO₂ and metabolic compensation
 - Dyspnoea
 - Increased RR, change in pattern of breathing (COPD- accessory muscle use, paradoxical breathing, rib indrawing, pursed lips breathing)
 - Agitation, tremor
 - Confusion to coma
 - Increase ICP, headache

Implications for physiotherapy:

- Watch for signs and symptoms
- Review medical assessment and management
- Determine type of respiratory failure
- Determine cause of respiratory failure

Case Studies:

1. 63yr old man following CAGSx3. Extubated onto oxygen therapy (40% venture).

ABGs= pH 7.39, paCO₂ 40, PaO₂ 50, HCO₃- 26, BE+2

CXR= *left lower lobe collapse*

Confused, agitated, aggressive, with rapid and shallow breathing

Ausc= decreased BS left lower zone

Moist, weak, NP cough

- Oxygen movement problem
- Decreased SA
- General secretion movement impairment
- \rightarrow type 1 hypoxameic respiratory failure
- 2. 69yr old COPD patient Dx 10yrs ago, 1-2amdn/year with chest infections. 40yr smoking history. Presents with: 2/7h/o increased SOB, chills, fever, chest pain Cough= p/o/s/a green sp, difficulty clearing

CXR= hyperinflation (chronic), flattened diaphragms, patchy consolidation, (R)LL PFTS= severe COPD- FEV_1/FVC = 0.38/1L

Ausc= cracjks (R)LZ laterally, decreased BS throughout

ABGs- on 2L/min O_2 via nasal prongs, pH= 7.35m PaCO₂= 65, PaO₂= 58, HCO₃=28, BE= 3 (normally on 1L/min O_2 = 7.39/50/80/28/3)

- 0₂ and CO₂ movement problem
- Acute on chronic failure
- Secondarily secretion movement impairment