Direct stresses σz carried by boom due to constraint ... 137
Shear lag: ... 139
Example 20: .. 140
Chapter 11: Elasticity .. 143
Equations of Equilibrium: ... 144
Plane Stresses: ... 145
Strain: .. 145
Compatibility equations: .. 146
Plane stress: ... 146
Stress strain relationship: ... 147
Governing equations: ... 147
2D problems in elasticity: .. 148
2D problems: .. 148
Stress functions: ... 149
 Airy stress function $\phi(x, y)$: ... 149
Chapter 13: 2D problems in polar coordinates ... 157
Equations: .. 158
Applications of solutions: .. 163
 Disk with no hole subjected to radial pressure: ... 163
 Disk with no hole, pressure both surfaces .. 164
 Infinite plate with circular hole, uniaxial loading: .. 165
 Pure bending of curved bar: ... 172
Chapter 14: Plate Bending Theory ... 175
Kinematics of deformations: .. 175
Stress – strain relationship: .. 176
 Moment curvature relationship: .. 178
 Equilibrium equations: .. 178
Equations for plate bending theory: .. 181
 Boundary Conditions: .. 181
Solutions for thin beams: .. 182
 Navier’s solution for SS rectangular plate (1820) .. 182
 Levy’s solution for rectangular plate: .. 186
Chapter 15: Plates with combined bending and inplane loads 189
Governing equations: ... 189
Example 30: ... 190
Buckling of thin plates: ... 191
Chapter 16: Energy methods for bending of plates: ... 192
 strain energy produced by bending and twisting: ... 192
Potential energy of transverse load: ... 193
Potential energy of inplane loads: ... 193
 Example: .. 194
Chapter 17: Mechanics of composite structures: ... 196
 Behaviour of unidirectional composites: 196
 Mechanics of a lamina: ... 197
 Hooke’s law: .. 198
 Engineering constants: ... 198
 Off axis stress strain relations: .. 200
 Transformation of Engineering Constants ... 201
 Strength in biaxial stress states: .. 202
Mechanics of laminiated composites: .. 203
 Simplification of stiffness matrices: .. 207
 Design considerations: ... 208
Tutorials .. 209
 Tute 1 .. 209
 Tute 2: ... 211
 Tute 3 .. 214
 Tute 4: ... 216
Lecture 1. Monday, 6 March 2017

Introduction to course
Lecturer: Professor Liyong Tong; liyong.tong@sydney.edu.au
- Monday 2-4 AERO N328 office hour

UOS description:
- Theoretical basis of advanced aerospace structural analysis
- Real-world aircraft structural problems

Attributes:
- An understanding of the derivation of the fundamental equations of elasticity and their application in certain analytical problems;
- An understanding of plate theory and the ability to use this to obtain analytical solutions for plate bending and buckling problems;
- An understanding of energy-method to develop a deeper appreciation for the complexities of designing solution techniques for structural problems;
- An understanding of the basic principals behind stressed-skin aircraft construction and the practical analysis of typical aircraft components, including the limitations of such techniques.

Assessments:

1. Assignment 1 No 5.00 Monday Week 3 4,
2. Assignment 2 No 5.00 Monday Week 6 4,
3. Assignment 3 No 5.00 Monday Week 9 1, 4,
4. Assignment 4 No 5.00 Monday Week 11 1, 2, 3, 4,
5. Assignment 5 No 5.00 Friday Week 13 1, 2, 3, 4,
6. Quiz 1 No 10.00 Week 5 (week 1-5 content) 1, 2, 3, 4,
Assignment: A penalty of 15% per day will be applied for late submission.

Quiz: Each quiz will be closed-book and held during lecture hour.

Exam: This will be a closed-book exam. A student must get 40% in the final exam to pass the unit, regardless of the sum of his/her individual marks.

There may be statistically defensible moderation when combining the marks from each component to ensure consistency of marking between markers, and alignment of final grades with unit outcomes.

Textbook:
Aircraft structures for engineering students, 5th edition, Elsevier 2013

References:
Theory of elasticity; Timoshenko/Goodier

Theory of elastic stability; Timoshenko/Gere

Theory of plates and shells; Timoshenko/Woinowsky-Kreiger

Schedule:
Loads on aircraft (Chap 13-15 in textbook)

2 Function of structural components (Chap 12 in textbook)

3 Bending of beams with non-symmetrical cross-sections (Chap 16 in textbook)

4 Stress, strain and displacement relationships for open and closed single cell thin walled beams (Chap 17 in textbook)

5 Torsion of thin walled beam sections (Chap 18, 27, 3 in textbook)

6 Structural idealization (Chap 20 in textbook)

7 Multicell beams (Chap 19, 22, 23, 24 in textbook)

8 Tapered beams (Chap 21, 23 in textbook)

9 Shear panels, ribs and cut-outs (Chap 24 in textbook)

10 Structural constraints (Chap 26 in textbook)

11 Elasticity (Chap 1 in textbook)

12 2D problems (Chap 2 in textbook)
Chapter 1: Loads on Aircraft

Types of Loads
An aircraft is required to support two types of basic loads:

1. Ground loads:
 - Encounted by aircraft during ground movement
 - Taxying
 - Landing
 - Towing

2. Air loads
 - Loads exerted onto the structure during flight by manoeuvres carried out by the aircraft or wind gusts (such as wind shear)

These loads can be further divided into:

- Surface loads
 - Act on the surface of the structure (eg: aerodynamics or hydrostatic loads)
- Body forces:
 - Act over the volume of the structure and are generated by gravitational and inertial effects

Ground Loads:
- Loads experienced include weight and reactions
Air loads
Loads experienced can change depending on manoeuvres

Level flight
- Thrust, lift, weight, drag

Pull up flight:
- Orientation of some forces changes when pulling up
Steady banked turn
- Lift vector changes towards angle of turn.

Aerodynamic surface loads
Spanwise
- Bending moments, shear, torsion, tension/compression etc

Chordwise

Pressure Distribution over airfoil

Wind Velocity

Lift (L)

Moment (M)

Centre of Pressure (CP)

Aerodynamic Centre

Drag (D)
Chapter 2: Function of Structural Components

Typical semi-monocoque structural components
- Cover skin
- Spar web
- Transverse rib
- Transverse frames
- Spar cap
- Longitudinal stringers
Stiffeners:
- Resist bending and axial loads
- Divide the skin into small panels
- Act with skin to resist axial loads caused by pressurisation

Skin:
- Transmits aerodynamics forces to the longitudinal and transverse members
- Develops shear stresses to react the applied torsional moments
- Together with longitudinal members, it resists axial loads and applied bending

Transverse frames
- Maintains cross sectional shape
- Distributed concentrated loads
- Establishes column length to prevent buckling
- Provides edge restraint for skin
- Acts with skin to resists circumferential loading

Typical semi-monocoque construction of aircraft wing

Spar flanges
- Resist bending and axial loads
- Divide skin into small panels
Skin:
- Transmits aerodynamics forces to the longitudinal and transverse members
- Develops shear stresses to react the applied torsional moments
- Together with longitudinal members, it resists axial loads and applied bending

Spare web
- Develops shear stresses to react the applied torsional moments

Longitudinal stiffeners
- Resists bending and axial loads
- Divides skin into small panels
- Acts with skin to resist axial loads caused by pressurisation

Lecture 2. Tuesday, 7 March 2017

Chapter 3: Bending of Beams with non-symmetrical cross section

Sign convention and notation:
Forces and moments:
\(T = \text{torque}. \)
- Positive using right hand rule with thumb out of beam

\(M = \text{Bending moment}. \)
- \(M_x \) and \(M_y \) are positive if they induce a positive stress in the positive \(xy \) quadrant of the beam.

\(S = \text{Shear force}. \)
- Positive in positive \(x, y, z \) depending on orientation

\(w = \text{distributed load}. \)
- Positive out
\(P = \text{axial/direct load.} \)

- Positive out of beam

0 moments \(M_x \) and \(M_y \) are positive if they induce a positive stress in the positive \(xy \) quadrant

Displacements:
\(u, v, w \) are \(x, y, z \) displacements in axial direction

Placement of origin:
- MUST adhere to right hand rule.

Bending of a beam
Recall: bending of beam with symmetrical cross section
Recall from Mech of solids 1: the bending moment on a symmetrical cross section is \(\sigma = \frac{M_y}{I} \); eg a circular, I beam or rectangular cross section.

Non symmetric cross section:
Step 1: Determination of centroid and neutral axis
\[\bar{x} = \frac{\sum x_i A_i}{\sum A_i} \]

Note:

Centroid
- the centre of mass of a geometric object of uniform density.

Neutral axis
- a line or plane through a beam or plate connecting points at which no extension or compression occurs when it is bent.
- No bending stress

Example: finding centroid
\[
\bar{x} = \frac{\int_A x \, dA}{\int_A dA} \\
\bar{y} = \frac{\int_A y \, dA}{\int_A dA}
\]

For a triangle:

\[
\therefore \bar{x} = \frac{\int_0^h \int_0^x x \, dx \, dy}{\int_0^h \int_0^1 \, dx \, dy} = \frac{b}{3}
\]

Parallel axis theorem:

\[
I'_{xx} = \sum_i (I_{xx_i} + y_i^2 A_i) \\
I'_{yy} = \sum_i (I_{yy_i} + x_i^2 A_i) \\
I'_{xy} = \sum_i (I_{xy_i} + x_i y_i A_i)
\]

Where \(I'_{xx} \) is the moment of area about the centroid, \(I_{xx} \) is the moment of area of a shape, \(y_i \) is the distance from centroid of shape to total centroid, \(A \) is area of the shape.

Note: no geometric property equation provided in exam.
Stress at point \((x, y)\) or \(dA\)

\[
\sigma_x = \frac{E}{R} (x \sin \alpha + y \cos \alpha)
\]

Moment equilibrium:

\[
M_x = \int_A \sigma_x y \, dA
\]

Perpendicular distance of \(dA\) from NA

\[
\xi = x \sin \alpha + y \cos \alpha
\]
Normal bending stress:

\[\sigma_z = \left(\frac{M_y l_{xx} - M_x l_{xy}}{l_{xx} l_{yy} - l_{xy}^2} \right) x + \left(\frac{M_x l_{yy} - M_y l_{xy}}{l_{xx} l_{yy} - l_{xy}^2} \right) y \]

Or:

\[\sigma_{x_i} = \frac{\bar{M}_x}{l_{xx}} y_i + \frac{\bar{M}_y}{l_{yy}} x \pm \frac{P_z}{A} \]

if

\[\bar{M}_x = \frac{M_x - M_y l_{xy}}{l_{xx} l_{yy}} \]
\[\bar{M}_y = \frac{M_y - M_x l_{xy}}{l_{xx} l_{yy}} \]

(note \(P_z = 0 \) if no applied load)

Where:

\[l_{xx} = \int_a y^2 dA \]
\[l_{xy} = \int_A x y dA \]

(note: for symmetric shapes, \(l_{xy} = 0 \))

Inclination angle of neutral axis:

The NA is when \(\sigma_z = 0 \)

Solving this using or formula for \(\sigma_z \) gives

\[\tan \alpha = -\frac{y_{NA}}{x_{NA}} = \frac{M_y l_{xx} - M_x l_{xy}}{M_x l_{yy} - M_y l_{xy}} \]

Deflection due to bending:

When a beam bends about its neutral axis, the deflection normal to the NA \(\zeta \), can be used to define the curvature ratio:

\[\frac{1}{\rho} = \frac{d^2 \zeta}{dz^2} \]

- And similarly in the \(x, y \) direction of deflection
Differentiating both twice wrt z:

$$\frac{\sin \alpha}{\rho} = -\frac{d^2 u}{dz^2} \quad \frac{\cos \alpha}{\rho} = -\frac{d^2 v}{dz^2}$$

Substituting in $\sigma_z = \frac{E \xi}{\rho} = \frac{E}{\rho} (x \sin \alpha + y \cos \alpha)$ and the moments:

$$M_x = -E (I_{xy}u'' + I_{xx}v'')$$
$$M_y = -E (I_{yy}u'' + I_{xy}v'')$$

Moment curvature relation:
This can be expressed as a matrix:

$$\begin{pmatrix} M_x \\ M_y \end{pmatrix} = -E \begin{pmatrix} I_{xy} & I_{xx} \\ I_{yy} & I_{xy} \end{pmatrix} \begin{pmatrix} u'' \\ v'' \end{pmatrix}$$

Summary: Bending of with non-symmetrical cross section

Bending stress:

$$\sigma_z = \left(\frac{M_y I_{xx} - M_x I_{xy}}{I_{xx} I_{yy} - I_{xy}^2} \right) x + \left(\frac{M_x I_{yy} - M_y I_{xy}}{I_{xx} I_{yy} - I_{xy}^2} \right) y \pm \frac{P_x}{A}$$

Where: $I_{xx} = \iint_A y^2 dA$; $I_{yy} = \iint_A x^2 dA$; $I_{xy} = \iint_A xy dA$

Direction of Neutral Axis:

$$\tan \alpha = \frac{y_{NA}}{x_{NA}} = \frac{M_y I_{xx} - M_x I_{xy}}{M_x I_{yy} - M_y I_{xy}}$$

(take downwards as positive)

Moment- Curvature relation

$$\begin{pmatrix} M_x \\ M_y \end{pmatrix} = -E \begin{pmatrix} I_{xy} & I_{xx} \\ I_{yy} & I_{xy} \end{pmatrix} \begin{pmatrix} u'' \\ v'' \end{pmatrix}$$
Solution steps:
1. Determine location of centroid about a selected origin
2. Shift the axis to the centroid
3. Determine sectional properties (I_{xx}, I_{yy}, I_{xy} and A of each segment)
4. Calculate bending stress

Example 1:

Example 1: The beam shown is subjected to a bending moment of 150Nm about the x-axis. Calculate the maximum direct stress due to bending stating where it acts.

Figure 15: Beam cross section with applied bending moment

Determine location of centroid: (take A as origin)

$$
\bar{x} = \frac{\sum x_i A_i}{\sum A_i} = \frac{120(8)(28) + 80(8)(4)}{120(8) + 80(8)} = 18.4\text{mm}
$$

Similarly:

$$
\bar{y} = 66.4\text{mm}
$$

Shift axis to centroid:
Determine sectional properties:

\[I_{xx} = \sum I_{xx} + y^2 A = \frac{120 \times 8^3}{12} + 120 \times 8 \times 17.6^2 + 8 \times \frac{80^3}{12} + 80(8)(26.4)^2 = 1.09 \times 10^6 \text{mm}^4 \]

Similarly:

\[I_{yy} = 1.38 \times 10^6 \]
\[I_{xy} = 0.405 \times 10^6 \]

Finding bending stress:

\[\sigma_x = \left(\frac{M_y I_{xx} - M_x I_{xy}}{I_{xx} I_{yy} - I_{xy}^2} \right) x + \left(\frac{M_x I_{yy} - M_y I_{xy}}{I_{xx} I_{yy} - I_{xy}^2} \right) y \]

Stress at each point: draw up a table with each \(xy \) coordinate of each point

<table>
<thead>
<tr>
<th>Point</th>
<th>(x)</th>
<th>(y)</th>
<th>(\text{sigma-z})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>69.6</td>
<td>21.6</td>
<td>0.15</td>
</tr>
<tr>
<td>2</td>
<td>-50.4</td>
<td>21.6</td>
<td>5.02</td>
</tr>
<tr>
<td>3</td>
<td>-50.4</td>
<td>13.6</td>
<td>3.92</td>
</tr>
<tr>
<td>4</td>
<td>-18.4</td>
<td>13.6</td>
<td>2.62</td>
</tr>
<tr>
<td>5</td>
<td>-18.4</td>
<td>-66.4</td>
<td>-8.39</td>
</tr>
<tr>
<td>6</td>
<td>-10.4</td>
<td>-66.4</td>
<td>-8.72</td>
</tr>
<tr>
<td>7</td>
<td>-10.4</td>
<td>13.6</td>
<td>2.29</td>
</tr>
<tr>
<td>8</td>
<td>69.6</td>
<td>13.6</td>
<td>-0.95</td>
</tr>
</tbody>
</table>
Approximation for thin walled sections:

As $t \ll h$, can approximate $t^3 \approx 0$

Due to symmetry:

- $I_{xy} = 0$
- $I_{xx} = 2bt^2 + 2bth^3$
- $I_{yy} = \frac{2tb^3}{12} + 2bt\left(\frac{hb}{2b + 2h}\right) + 2ht\left(\frac{b^2}{2b + 2h}\right)$

With

Figure 17: Thin-walled channel section
Second moment of area for thin walled approximations:

\[\bar{x} = \frac{b^2}{2b + 2h} \]
\[\bar{y} = h \]

Figure 20: Thin skin section inclined at an angle \(\theta \) wrt the x-axis

\[I_{xx} = \frac{L^3 t \sin^2 \theta}{12} \]
\[I_{yy} = \frac{L^3 t \cos^2 \theta}{12} \]
\[I_{xy} = \frac{L^3 t \sin 2\theta}{24} \]

General loading relationships:
- Cutting a loaded beam for a small section \(\delta z \):