Table of Content

BABS3121

Basic Techniques 1

Basic techniques 2

Basic Techniques 3

Transcription: Gene regulation

Non-coding RNAs

Isolating genes that encode DNA-bi...

Mechanism of Action of Regulatory...

Transcription Factors in Development

Transcriptome

Introduction

Microarrays and RNA seq.

Differential expression

Transcriptomics Applications

Replication and Repair.

Initiation and completion of cell cycl...

Completion of replication

Spontaneous DNA damage

Cancer

End Course Notes

DNA damaging agents and anti-can...

Catalytic Nucleic Acids

Viral Vectors - Gene therapy

BABS3121

Basic Techniques 1

DNA structure and properties

- A polymer with 2 strands forming a helical structure.
- 1 turn on the helix (3.4nm) spans 10.5 bps.
- Narrow angle (120 degrees) between the sugars on one edge of the base pairs generates a minor groove. The large angle (240 degrees) on the other edge generates the major groove.
 - o Major groove, main interaction site of DNA and protein (TFs).
 - Because more chemical properties of DNA are exposed.
- Two strands interact non-covalently through hydrogen bonds.
- Two strands are anti-parallel.
- **DNA forms:** can exist in 3 forms.
 - A DNA: occurs during DNA-protein interactions; similar to dsRNA. Helix has 11bp per turn. The major groove is narrower and deeper than in B form. Right handed helix.
 - B DNA: Common in cells. Formed in the nucleus. Has 10.5bp per turn. Right handed helix.
 - o Z DNA: left handed helix transiently formed during transcription.
- Rosalind Franklin's X-ray diffraction image of DNA crystals, revealing Maltese cross confirming the helical structure. The white diamond areas also indicate the phosphate backbone.

- Summary:

- o DNA is not a perfectly regular double helix. Is non-uniform.
- Variations from the ideal occur, but average structure is close to ideal.
- o Variations in DNA structure are dependent on DNA sequence.
- o Random movement also occurs: NMR studies.

Measuring DNA

- DNA and RNA absorbs UV light. Max at 260nm.
 - An OD₂₆₀ of 1 = 50ug/ml of dsDNA = 40 ug/ml of ssDNA and RNA = 33ug/ml of dNTPs.
 - ssDNA absorbs more UV. As in dsDNA, the bases are hidden due to stacking.
 (Hyperchromic effect)
- o Proteins (esp. aromatic AAs) absorb UV at max 280 nm.
- Organics (phenolate ions, thiocyanates) absorb UV at max = 230 nm.
- o For pure RNA, the A_{230:260:280} should be 1:2:1
- For pure DNA, the A_{230:260:280} should be 1:1.8:1.

- Feature of DNA

- o Separate complementary strands at 100 degrees C, or under high pH, denaturation.
 - A reversible process, as complementary bases will reanneal at low temp.
- Melting temperature (Tm): the temperature at which the DNA strands are half denatured.
- o Tm increases with GC content, and ionic strength.
- Tm decreases with other agents: formamide and DMSO (binds to GC rich areas and facilities denaturation and primer annealing)

- PCR

- The size of PCR product is the distance between the 5' end of primers.
- Note: primers are included in the PCR product.

PCR Primer Design

- Guidelines

- Usually 18-22bp long.
 - Long enough for adequate specificity.
 - Short enough for primers to bind easily to template.
- o Primer melting temp should be set at 52-58 degrees depending of GC content.
- Primer annealing temp should be no more than 5 degree below the Tm of your primers.
- Maintain GC content at 40-60%. Should not contain regions of 4 or more consecutive G residues.
- Avoid sequences with propensity to form secondary structures.
- Prevent primer dimer formation.
 - When the 3 ends of the primers complement each other.
- o 3' end of primer most important for specificity.
- o Middle section of primer can have base mismatch (for site-directed mutagenesis)
- o 5' end of primer less important (can engineer restriction enzyme sites at 5' end)
- Reverse transcription PCR (RT-PCR)
 - o Amplify RNA. Can't use Taq polymerase, as it's a DNA polymerase.
 - o Use reverse transcriptase. A DNA polymerase that is RNA dependent.
 - o It will require a primer. Use the poly A tail to attach primer.
 - Use DNA polymerase on single stranded cDNA to form 2nd strand.
 - o When designing primers, remember there are no introns in mRNA.

DNA Cloning

- Restriction enzymes leave phosphate groups at 5' ends.
- Selectable markers: provide features of selective growth for cells that contain the vector. Use antibiotic, or ability to synthesize an essential component as selection process.
 - o Prokaryote: Ampicillin, Tetracycline, Kanamycin, Streptomycin, Zeocin
 - o Eukaryotic: Hygromycin, Histidinol, Neomyin (G418), Uracil.
- pGLO expression plasmid core elements
 - Origin of replication
 - Selectable markers
 - Promoter controlled by activator/repressor system. (Arabinose)
 - Multiple cloning site
- Problem when cloning PCR products as Taq polymerase adds a non-templated A to the 3' end. Removing it with nuclease proved unreliable.
 - o Solutions:
 - Vector with 3' thymine overhangs: used pGEM-T vector based cloning.
 - Engineer restriction enzyme sites at ends of PCR products.

Basic techniques 2

Reverse Transcription quantitative PCR (qPCR)

- Mostly used to quantify RNA levels.
- Composed of two techniques:
 - Reverse transcription: convert rna to cDNA.
 - If RNA does not have polyA tail (i.e. not from eukaryote) use hexamer oligonucleotide method.
 - And PCR
- Normal PCR has 3 stages:
 - Exponential: Exact doubling of product is accumulated at every cycle. Reaction is very specific and precise.
 - Linear: reaction components are being consumed and the reaction is slowing. Products are starting to degrade.
 - o Plateau: End point, the reaction has stopped, no more products being made.
- qPCR measures amount of product at the exponential phase.

- Threshold Cycle

- Central concept to calculate your qPCR product.
- o C_T: The amount of PCR cycles required before products fluoresces at the threshold level.
- The higher the C_T number, the smaller the initial PCR product.
- \circ From the C_T number, you can calculate the initial copy number, with standard curve.
- During qPCR, the machine can measure increasing fluorescence as the products duplicate.
- Called the fluorescent reporter, either in the form of
 - o fluorescent DNA-Binding dye
 - Fluorescent oligonucleotide primers.
- Only fluoresce when associated with the amplicon (PCR product), the increase in fluorescence is directly proportional to the amount of amplified product.
- SYBR Green I: will only interact with ds-DNA.
 - Advantages:
 - not sequence specific, so it can be used for any gene.
 - A cheap alternative to fluorescent probes.
 - Temperature stable and doesn't interfere with DNA polymerase.
 - Disadvantages:
 - Will also bind to primer dimers.
 - Long amplicons can generate very strong signal, thus causing saturation of camera. Thus 200-300bp long amplicons are recommended.
- Fluorescent probes: sequence-specific.
 - o DNA sequence-specific oligonucleotide probes. (approx. 20bp)
 - Contain fluorogenic dye and a quencher dye and are designed to hybridise to the target gene.
 - When fluorescent dye is in close proximity to a quencher dye the fluorescent signal generated by the fluorescent dye is absorbed by the quencher dye.
 - This is known as fluorescence resonance energy transfer (FRET).
 - When PCR amplification occurs, the fluorescent dye and the quenching dye become spatially separated, and thus no FRET, and fluorescence occurs.

TaqMan probes:

- A gene specific dye that contains fluorescent dye (FAM) at the 5' end and a quencher dye (TAMRA) at the 3' end.
- During annealing stage, both primer and probes anneal to target gene. But no fluorescence generated as quencher dye is near the fluorescent dye.
- During extension, the Taq polymerase displaces the probe, and results in the loss of dye contact, thus fluorescent signal produced.
- Advantages:
 - Sequence specific hence once designed, little optimisation is needed.
- Disadvantages:
 - Probe synthesis expensive
 - To perform qPCR, requires 3 oligonucleotides.
 - Probe can produce high background fluorescence.

Molecular beacons:

- Adopts a hairpin structure with each dye at each end. (No fluorescence)
- At annealing stage, the structure dissolves and it anneals to the amplicon resulting in loss of FRET.
- Advantages:
 - Lower background fluorescence, and greater specificity than taqMan probes.
- Disadvantages:
 - Difficult to design and optimise, due to hairpin structure.
- Scorpion probe:
 - Attaches to the 5' end of target gene specific primer.
 - During annealing and extension, it will anneal with DNA, and primer is extended.
 - A blocker on the prober prevents the Tag from reading it.
 - On the next denaturation step, the probe will dissolve and curl back to hybridise with the target sequence and loss FRET.
 - Advantages:
 - The signal is stronger and background lower comparing to TaqMan probes and molecular beacons.
 - Disadvantages:
 - Difficult design and expensive synthesis.
- Absolute quantification using standard curve.
 - Compare unknown to a standard curve created with known samples.
 - There is a variety of different standards that can be used, including in vitro reverse transcribed mRNA, in vitro synthesized single-stranded DNA, or purified plasmid DNA.
 - Only 1 sample needed.
 - Extra work needed to create a standard curve.
- Relative quantification using comparative threshold (CT) method
 - Compare 2 samples. A control and experimental.

- Compares Ct values of unknown to a control (calibrator) such as RNA from untreated sample.
- o Ratio or fold, change of expression can be established.
- o E.g. If Ct value of control is 17 and 22 for experimental.

Ratio Experiment : Control =
$$2^{\Delta Ct}$$
 = $2^{(22-17)}$ = 2^5 = 32

- (32-fold decrease in amount or expression)
- Warning (bias):
 - There can be a different initial concentration in template. A higher concentration will result in more.
 - Reverse transcription is an imperfect process, not very robust and will convert less cDNA than it should.
- Normalisation using double delta CT
 - The most acceptable way of correcting for differences in input RNA and reverse transcription efficiencies is based on normalization of the target gene to a housekeeping gene.
 - Housekeeping genes are ubiquitously expressed in all cells and tissues and constitute a basal transcriptome for the maintenance of fundamental cellular functions. E.g.
 - beta-actin (ACTB)
 - glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
 - 16S ribosomal RNA.
 - Co-amplify with the housekeeping gene.

$$2^{-[(Ct_{Exp}-Ct_{Cont})-(Ct_{Exp}-Ct_{Cont})]}$$
Corrected Ratio = $2^{\Delta\Delta Ct}$ = $2^{-(22-17)-(16-15)}$ = $2^{-(5-1)}$ = 2^{-4} = $1/16$ (16-fold decrease in amount or expression)