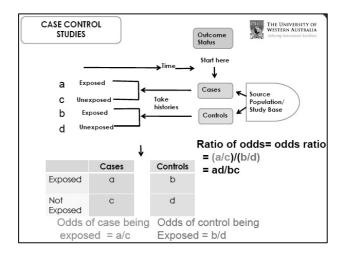
Case-control:


Start with OUCTOME & look back at EXPOSURE

- *Q: What are the odds that a case was exposed?
- *A rare OUTCOME and an EXPOSURE that can recalled
- *Measuring EXPOSURE but Selection of subjects is INDEPENDENT of it
- *To sufficiently match cases and non-cases
- *Selection and recall bias
- *Retrospective

Design:

- Study base/source: the source of all exposed unexposed cases & controls
 - a. All people at risk in the population
 - b. All **OUTCOMES** must come from this person-time source
- 2) Selection strategies
 - a. On the basis of OUTCOME which is a rare DISEASE
 - b. Chosen Independently of EXPOSURE (unknown); otherwise there would be selection bias
 - c. Must be representative of the study base
 - d. Cases: all incident cases selected
 - i. Person, place, time, exclusion criteria
 - ii. Not prevalent cases; only used if disease onset is difficult to identify
 - iii. Is there selection bias? Is **EXPOSURE** influencing selection into the study?
 - e. Controls: should represent probability of EXPOSURE in population AT RISK
 - i. Person, place, time, exclusion criteria
 - ii. Chosen independently of EXPOSURE
 - iii. One of the **trickiest** parts in this study design; provide estimate of **EXPOSURE** level expected to occur if there was no association found between **DISEASE** and **EXPOSURE**
- 3) Design questions:
 - a. Explicit research question
 - b. Define cases and controls how many?
 - c. Match / not-match?
 - d. Bias and confounding
 - e. Analysis
- 4) Types:
 - a. **Matching:** selecting controls so that they are similar to the cases in certain factors thought to be associated with the outcome i.e. age, sex, race, SES, occupation
 - i. Group matching: frequency matching
 - ii. Individual matching: matched pairs
 - 1. Conditional logistic regression rather than OR
 - iii. CANNOT study the factor that was matched on
 - iv. Risk of over-matching
 - b. Nested
 - c. Case-control within cohort study
- 5) Measuring Association (MoA) = OR
 - a. OR = 1 no association between EXPOSURE and OUTCOME/DISEASE
 - b. OR > 1 positive association between OUTCOME/DISEASE and EXPOSURE
 - c. OR < 1 negative association between OUTCOME/DISEASE and EXPOSURE
 - *Sensitivity analysis checks if the OR is free of bias

Item	Case-control
Population	Study base or source
Allocation	Based on outcome/disease
Outcomes	Rare, basis of subject allocation
Follow-up	Retrospective
Analysis	Deal with bias & confounding
MoA	OR, no incidence

Sources of error:

- 1) Misclassification of OUTCOME and EXPOSURE
 - d. Minimised by:
 - i. Using existing records
 - ii. Using well-designed questionnaires
 - iii. Use trained interviewers
 - iv. Blind subjects to question; ethical?
 - v. Memory triggers
 - vi. Validate against records
- 2) Effect of differential misclassification on OR:
 - a. Misclassification of EXPOSURE is different according to OUTCOME status
 - b. Non differential misclassification DECREASES the OR
 - c. Differential misclassification:
 - i. With DISEASE (cases) deny EXPOSURE = DECREASE OR
 - ii. Without DISEASE (controls) deny EXPOSURE = INCREASE OR = Causes havoc; better non-dif
- ****In cohort, misclassification of OUTCOME is different according to EXPOSURE status
- 3) **Confounding**: where the relationship between an **EXPOSURE** and an **OUTCOME** is due in part (or wholly) to a **3rd factor** that is differently distributed between the groups.
 - a. Must be a known risk factor
 - b. Be associated with the EXPOSURE but not a result of it
- 4) Bias
 - a. Selection bias of both cases and controls
 - b. Information/observation bias i.e. recall

Case control study within cohort study

- 1) Controls are not individually matched to cases
- 2) Advantages:
 - a. Reduced recall bias
 - b. No selection bias as cases and controls are from the same population
 - c. Temporality of data; **EXPOSURE** data available predating **OUTCOME**
 - d. Economical

Advantages	Disadvantages
-Choosing all cases is efficient	-Inefficient for rare exposures
-Efficient for rare diseases with long latency periods	-Selection bias if based on exposure
-Can study several exposures	-Exposure is subject to observation bias
-Cheaper and takes less time	-Recall and info bias
	-No incidence calculations

	Nested case-control	Case-control within cohort
Cases	Selected as they arise in the cohort	All cases identified in the cohort
Controls	Selected from full cohort at time of specific case identification; those at risk AT THE TIME of case identification	Randomly selected from whole cohort
Matching	Cases are matched on calendar time and length of	Pro: can use same control series for
	follow up	case series of different diseases