BIOL206 lecture notes

Genetics

Lecture 1: Introduction

Genetics

The study of genes – hereditary material

Genetics in Agriculture: Selective Breeding and GMO's

Food security

Genetics in Medicine

- Mutant/deleterious alleles
- Genetic applications disease treatment, disease risk
- Genetic counsellors

Genetics role in society

Economic (biotech, pharmaceuticals), legal (paternity, forensics), philosophical

Areas being covered

- Classical Genetics (Mendelian)
 - o Analysis of outcomes of crosses between strains of organisms
 - Structure and behaviour of chromosomes
- Molecular Genetics
 - o Replication, expression, mutation of genes at the molecular level
 - o Study of DNA sequences and manipulation of DNA molecules
- Environmental/Evolutionary Genetics
 - o Different alleles of genes
 - o Ecological genetics based on analysing allele and genotype frequencies

Lecture 2: Revision I

Structures of DNA/RNA

- DNA double stranded, A-T, C-G
- RNA single stranded, A-U, C-G
- A-T = 2 H bonds, C-G = 3 H bonds

Polynucleotide chain

Opposite polarity of the two strands

Chromosomes

- Linear end-to-end arrangement of DNA
 - 2 main activities:
- o Transmit info from cell → cell and from one

generation > generation

o Express the

info to control cellular function and development

- Homologous Chromosomes occur in pairs and are similar in shape/size, one being inherited from the female parent and the other from male parent
 - o Same genes
 - Metacentric centromere in the middle
 - Acrocentric centromere towards one end
 - Telocentric centromere at the end

DNA Packaging

- DNA → nucleosomes → chromatin → chromosome
- 2nm double stranded DNA molecule, 11nm nucleosome, 30nm chromatin

Gene, Locus, Allele

BIOL206 lecture notes

Genetics

- ABO locus (blood type) - IAIA or IAi = A, IBIB or IBi = B, IAIB = AB, ii = O

Pedigree

- The first generation of descent from a given mating F1 = the first generation of sons and daughters
- The second generation produced by the F1 mating with each other inbred grandchildren of a given mating (controlled genetic experiment)

Punnet Squares

- When looking at 2+ (unlinked) genes:
 - o 1. Work out the probabilities for the 1st gene by itself
 - o 2. Work out the probabilities for the 2nd gene
 - o 3. Continue looking at each gene separately until the probabilities for each gene has been calculated
 - 4. Multiply the probabilities

Probability

- Product rule (independent events) AND = MULTIPLY
- Sum rule (mutually exclusive events) OR = ADD

Probability (P) =no. times event is expected no. opportunities for event

Lecture 3: Revision II - Sex and Reproduction

Basic Definitions

- Somatic body cell, genes wont be passed onto next generation
- Germ cell reproductive cell, fertilisation

Spindle pole

Kinetochores

Polar microtubule

Nuclear envelope

Kinetochore microtubule

Gamete – A mature male or female reproductive cell (haploid)

Reproduction vs. Sex

- Reproduction = 1 cell → 2
- Sex = 2 cells \rightarrow 1
 - Unnecessary for reproduction, slows
 - What is sex? Cyclic alternation of fusion of haploid gametes → diploid zygote and regeneration of haploid cells from diploid (meiosis)
 - Why sex? Increases genetic variation (Natural Selection)

Chromosomes

move to metaphase plate

The cell cycle

Mitosis

Nuclear envelope

breaks down

Cell division to produce 2 genetically identical daughter cells (same # of chromosomes)

Spindle pole

vesicles

Polar microtubule

Kinetochore microtubules

M

Cell grov

 G_2

4 Hours

9 Hours

Meiosis

microtubules

- Chromosome # becomes reduced to half the diploid (2n) or somatic
 #
- Changes genetic info to increase diversity
- 2 successive divisions:
 - 1. Reductional division: chromosome # is halved
 - o 2. Equational division: sister chromatids separate
- Meiosis 1:
 - o Prophase I
 - Chromosomes condense, each chromosome has 2 sister chromatids
 - Synapsis of homologous chromosomes, synaptonemal complex
 - Synaptonemal complex = DNA and protein between homologous chromosomes in synapsis/crossing over, recombination nodules have enzymes for crossing over
 - Chromosomes condense further, bivalent, crossing over occurs
 - Crossing over causes recombination recombinant gametes, new combination of alleles/genes = genetic variation
 - Paired chromosomes separate slightly but are in contact as chiasmata
 - Chiasmata where the chromosomes touch
 - Nuclear envelope breaks down, spindle fibres attach to kinetochores, chromosomes move to central plane in pairs
 - Metaphase I paired chromosomes oriented on opposite poles
 - Terminalisation chiasmata move towards telomeres
 - Anaphase I chromosome disjunction (separation of paired chromosomes), separated homologues move toward opposite poles
 - Telophase I chromosomes reach poles, nuclei, spindle disassembled, daughter cells separated, chromosomes decondense, each chromosome has 2 sister chromatids
 - Prophase II → Metaphase II → Anaphase II → Telophase II → Cytokinesis (same as Mitosis but 1/2)
- Importance generates genetic variation, increases diversity
 - Mendelian inheritance: behaviours of Mendel's particles (genes) during production of gametes in peas precisely parallels the behaviour of chromosomes

