# ISYS2421ExamRevisionQuestions

# Week 1

# Why data / information is needed

- For for operational and transactional functions of the organisation
- Help in decision making
- "Data management" is needed to (store, collect and retrieve data)

## What is a database

- A collection of data stored in a standardised format designed to be shared by multiple users
- An organised collection of logical related data

## What is a DBMS?

- A software that defines a database, stored the data supports a query language, produces reports and creates data entry screens.(DML)

## Why are Databases Important

- Integral component of all information systems
- Integral part of most websites
- Almost all databases uses SQL

### Basic DBMS components

- tables/relation
- records/tuples/rows
- fields/attributes/columns
- Data dictionary/repository
- DDL, DML&DCL

# Data dictionary or repository

- Meta data
- Data about data
- Helps us describe what the raw data is, which is stored in our database
- Describe the semantics of the data stored:(naming,

heading/caption, validation, foundation, scale, etc...)

#### Computability of Data

- To calcuate new deices of data and information from the raw data .computing on the data .
- No need to store computable data
- We also need to present information in readable forms and formats

## Advantages of database

- Minimal data

#### redundancy

- Sharing of data - Uniform security

privacy and

## integrity

- Data consistency - Enforcement of

#### standards

- Data

## independence

- Integration of data - Ease of application

Examples of database systems

- Oracle
- MySql
- Access, SQL server (Microsoft)
- DB2,SQL/DS(IBM)
- ingres,informix(Unix)

People associated with DBMS

- Database administrator(DBA)
- Data administrator(DA)
- End User
- System analysts and application runner
- Operators and maintenance personnel

Risks and costs of DBMS (main drawbacks)

- Organisational conflicts
- Development project failure
- System failure
- Overhead costs
- Need for sophisticated personnel

# Week 2

SQL -> (Structured Query Language)

- A complete interface language for a database system
- Data definition : (le. creating & defining files , fields etc)
- Data manipulation : ( ie. inserting updating & deleting records)\
- Data Extraction: (ie. getting data from the database(queries) )\

# Week 3

Scalar functions

- Functions that are a singular value
- Usable where you would normally use a value
- Normally used within the column definitions or within where clauses etc

Statistical functions

- There are 5 basic statistical functions (count(\*) MAX MIN AVG SUM)
- They are also known as "grouping" functions
- All statistical functions return one value only, no matter how many rows they operate on.
- When they are used , value only ,no matter how many rows they operate on.
- When they are used, values of individual rows cannot be displayed
- "Can be used with usual where clauses."

Count(\*)

- Counts numbers of rows

Sum(...)

- Adds up values in a specified column for all selected rows.

**AVG** 

- Averages

#### Max

- Highest value found for a specific coulomb of selected rows Min
- Lowest value for a specific coulomb of selected rows Grouping Data - Group by
- Also known as "break" reports
- A grouping field is selected to group the rows
- The rows are sorted by the grouping field
- Rows with the same value for the grouping field are treated as a "group"
- Usually a statistical function is also used and applied to each group(eg: SUM) Group By Extra fields
- When group by used , the only fields that can be displayed are the grouping field and statistical functions
- Values for individual rows cannot be displayed.
- If you want to display other fields , a trick is to include the extra field as a secondary grouping field in the group by clause

Grouping Data 'HAVING'

- The having clause operates like a where clause , but it's applied to the grouping value
- Where is applied to each row before the grouping operation is done
- HAVING is applied after the grouping is done
- HAVING is applied after the grouping is performed and operates on the calculated grouping value (before it is displayed).

# Week 4

Joining table

- Any operation involving more than one table , such as Querying on two tables involves a join Operation
- SQK specifies links between tables in the query its.MS Access allows Pre Defined relationships
- To us fields from two tables in one query, specify both tables in the from clause, separated by a comma.

Unbounded join

- An unbounded join is the combination of every row in one table with every row in the other table, regardless of their values.
- Every join will be an unbounded join unless it is constrained in some way (eg: by specifying common fields)

Natural join

- A natural join is made by specifying two fields (one in each table) that contain common values (eg keys), using the join/on or where clause.
- Assuming an unbounded join occurs, only the combinations where the two fields are the same are selected.
- In reality, the query processor does not need to produce every unbounded combination , only those that match linking criteria

Linking Criteria

- We name each common field pair defined in the where or from/on clause as a linking criteria

- The minimum number of linking criteria required per query is one less than the number of tables otherwise an unbounded join will occur (eg. if joining 4 tables there should be at least 3 linking criteria involving all 4 tables.
- Linking fields often have the same name ,which would cause ambiguous field without specifying table name.

Linking criteria: where

- FROM clause (link criteria can be specified within the FROM clause when the tables are specified using Join and ON clauses; Allows LEFT and RIGHT joins to be performed)
- WHERE clause (link criteria can be specified in the WHERE clause. Limitations here is that naturally joins can be specified. Criteria (link & selection) are combined using AND clauses in the WHERE clause.there is only one WHERE clause in select statement.)

Qualifying fields and using aliases

- Any field name common to both tables must be qualified by the table name (or an abbreviation) within the query.
- A shorthand alias can be used by declaring it just after the table name in the FROM clause

Join other selection criteria

- There is only one WHERE clause, even when there are linking criteria
- Other selectio/search criteria are added on using AND or OR
- There is a WHERE clause for selection criteria when using the JOIN ON join syntac
- Multiple search criteria are added on using AND or OR Self join
- A self join of a table to itself. This is a UNARY relationship
- The table name appears twice in the FROM clause
- Acts as if there are two copies of the same table.
- Aliases are used to identify each tables fields

#### Outer join

- An outer join specifies all rows from one table should be displayed even if they have no match in the other table.
- To write a query that performs an outer join of tables A and B and returns all rows from A apply the outer join operator to all columns of B in the join condition.
- This is done on the FROM clause using JOIN ON clause ( Left join , Right join) Views
- Setting up phantom tables made up from other table(s)
- Useful for often used joins and calculations helps get around problem of having to provide table join criteria within the queries themselves.
- Also useful for presenting tables in different ways to different users
- Used as form of security to give users access to a table but only curtain columb in the table.
- The view is active to remove a view do the following ( 'Drop View...")
- If data is changed in the base tables, also changed in the view
- However high processing cost

Combine select statement

- Column results of two select statements are combined into one result set (eg: union

(union all) Intersect and minus)

- Column of each select must match by type & order placed in SELECT clause.
- ORDER BY cannot be Specified on whole result set.
- Column headings are based on the first query