Module 7: MySQL

CREATE Table
CREATE TABLE <table name>

(<column name> <column type>
[<attribute constraint>]

{, <column name> <column type>
[<attribute constraint>] }

[<table constraint> {, <table constraint>}])

CREATE TABLE Example

DEPARTMENT [DNUMBER, DNAME, MGRSSN, MGRSTARTDATE]

EMPLOYEE [SSN, FNAME, MINIT, LNAME, BDATE, ADDRESS, SEX, SALARY, SUPERSSN, DNO]

CREATE TAELE EMPLOYEE

(FNAME VARCHAR (15) NOT NULL Either of these:
MINIT CHAR * PRIMARY KEY (SSN),
LNAME VARCHAR (15) NOTNULL, FOREIGN KEY (SUPERSSN) REFERENCES EMPLOYEE (SSN),
SSN CHAR (9) NOT NULL, FOREIGN KEY (DNO) REFERENCES DEPARTMENT (DNUMBER));
BDATE DATE,
ADDRESS VARCHAR (30), CONSTRAINT EMPPK PRIMARY KEY (SSN),
SEX CHAR, CONSTRAINT EMPSUPERFK FOREIGN KEY (SUPERSSN) REFERENCES
SALARY DECIMAL (10, 2), EMPLOYEE (SSN),
SUPERSSN CHAR (9), CONSTRAINT EMPDNOFK FOREIGN KEY (DNO)
DNO INT NOT NULL, REFERENCES DEPARTMENT (DNUMBER)

ALTER Table
ALTER TABLE <table name>

ADD <column name> <column type>
[<attribute constraint>]

| DROP <column name>~ [CASCADE]
ALTER <column name> <column-options>

To add an attribute (Value in all tuples will be initially NULL, so NOT NULL
cannot be specified)

— ALTER TABLE EMPLOYEE ADD JOB VARCHAR(12);
To drop an attribute
— ALTER TABLE EMPLOYEE DROP ADDRESS;

To drop a constraint (constraint must have been given a name when it was

. " : ; specified)
i ALTER TABLE EMPLOYEE DROP CONSTRAINT EMPSUPERFK CASCADE:
DROP <constraint name> [CASCADE]; - ’
DROP Table DROP TABLE

DROP TABLE <table name> [CASCADE],

— Drops all constraints defined on the table including constraints in other
tables which reference this table

— Deletes all tuples within the table
— Removes the table definition from the system catalog

INSERT statement
e Add tuples to an existing relation
INSERT INTO <table name>
[(<column name> {, <column name> })]
(VALUES (<constant value>, {,<constant value>})
| <select statement>);

INSERT INTO EMPLOYEE
VALUES
(‘Richard’, 'K.", ‘Marini’,'653298653',
"30-DEC-52','98 Oak Forest, Katy, TX’, 'M’,37000,'987654321",4);

Given:
EMPLOYEE [FNAME, MINIT, LNAME, SSN, BDATE, ADDRESS, SEX, SALARY, SUPERSSN, DNO]

INSERT INTO DEPTS-INFO
(DNAME, NO-OF-EMPLOYEES, TOTAL-SALARY)

SELECT DNAME, COUNT (*), SUM (SALARY)
FROM DEPARTMENT, EMPLOYEE
WHERE DNUMBER = DNO

GROUP BY DNAME ;

Given:
EMPLOYEE [FNAME, MINIT, LNAME, SSN, BDATE, ADDRESS, SEX, SALARY, SUPERSSN, DNO]

DEPARTMENT [DNAME, DNUMBER, MGRSSN, MGRSTARTDATE]

DELETE statement
e Remove existing tuples from a relation

DELETE FROM <table name>
[WHERE <select condition>];

DELETE FROM EMPLOYEE
WHERE DNO = 5;

Given:
EMPLOYEE [FNAME, MINIT, LNAME, SSN, BDATE, ADDRESS, SEX, SALARY, SUPERSSN, DNOJ

UPDATE statement
e Modify attribute values of one/more

selected tuples in a relation
UPDATE <table name>
SET column name> = <value expression>

[WHERE <select condition>];

UPDATE EMPLOYEE
SET SALARY = SALARY * 1.1
WHERE LNAME = ‘McGowen’;

Given:
EMPLOYEE [FNAME, MINIT, LNAME, SSN, BDATE, ADDRESS, SEX, SALARY, SUPERSSN, DNOQ]

SELECT statement
SELECT <attribute list>

FROM -table list>
[WHERE <condition>] ;
ORDER BY ...

SELECT EMP_ADDRESS
FROM EMPLOYEE
WHERE EMP_NAME = “Joe Bates”

EMPLOYEE
EMP NAME EMP ADDRESS DEPARTMENT
Nicole Smith 1 Pine Road Info. Systems
Joe Bates 32 Chandler Rd Manufacturing
Resuits: EMP_ADDRESS

32 Chandler Rd

Complex WHERE conditions

Substring Comparisons Examples
LIKE e ... WHERE Address LIKE ‘%StLucia%’
e ... WHERE StrDate LIKE‘_ _/05/ _ '’
IN e .. WHERE LName IN (‘Jones’, “‘Wong’, ‘ Harrison’)
IS e ... WHERE DNo is NULL

(usually used in conjunction
with NULL and NOT NULL
Arithmetic Operators &

Functions
+, -, ¥, /, date and time e .. WHERE Salary * 2 >5000
functions e ... WHERE Year(Sys_Date — Bdate) > 55
BETWEEN e ... WHERE Salary BETWEEEN 10000 AND 30000
Other functions
DISTINCT 9. List the distinct salaries paid to employees in each department
e Removes duplicates
SELECT DISTINCT Salary, DNo Salary Dno
FROM EMPLOYEE; 30000 5
40000 5
25000 4
43000 4
25000 5
55000 1

Sortlng Example - By Heading 14a. List the last names of all employees working in department 6, and their
salaries given a 10% increase.

14b. List the last names of all employees working in department 6, and their
salaries given a 10% increase.

SELECT Lname, 1.1 * Salary

SELECT Lname, 1.1 * Salary AS Inc-Sal FROM EMPLOYEE
FROM EMPLOYEE WHERE Dno =6
WHERE Dno =6 ORDER BY 2;
ORDER BY Inc-Sal;
Given:
Given: EMPLOYEE [FNAME, MINIT, LNAME, SSN, BDATE, ADDRESS, SEX, SALARY, SUPERSSN, DNO]

EMPLOYEE [FNAME, MINIT, LNAME, SSN, BDATE, ADDRESS, SEX, SALARY, SUPERSSN, DNO]

Aggregation
e Functions that produce summary values, which can be applied to a selected set of tuples, to all tuples, or to
multiple groups of tuples, specified by the GROUP BY clause

COUNT | Counts the number of tuples query returns

SUM Calculates the sum of a set of numeric values

AVG Calculates the average of a set of numeric values

MAX Returns the maximum value from a set of values, which have a total ordering. (Note that domain
of values can be non-numeric)

MIN Returns the minimum value from a set of values, which have a total ordering. (Note that domain
of values can be non-numeric)

GROUPING in SQL
SELECT [DISTINCT]

FROM <table list> '\
[WHERE [join condition and] Attributes must also appear
SeTTCHT_COTTatom in the GROUP BY clause or
E GROUP BY grouping aWD in Aggregation functions
~aliimn_nam

[ASC\DESC]{ column-name [ASC|DESC]}]

e When GROUP BY is used in an SQL statement, any attribute appeared in SELECT Clause must also appeared
in an aggregation function or in GROUP BY clause.

Conditions on Groups

HAVING clause (following the GROUP BY clause) is used to specify the conditions (similar to WHERE clause), but

can also include aggregates

SELECT [DISTINCT]

FROM
[WHERE [join condition and]
search_condition]
[GROUP BY grouping attributes]
THAVING <group con@
[ORDER BY column_name
[ASC|DESC] {, column-name [ASC|DESC]}]

Set Operators

UNION e Produces a relation that includes all tuples that appear only in R1, or only in R2, or in both R1
and R2.

e Duplicate entries are eliminated.

Two relations are union compatible if:

o they have the same no. of columns

Their columns have corresponding domains (i.e. dom(Ai) = dom(Bi))
25. List the ESSN's of employees who have dependents or work on projects

25a. List the ESSN'’s of employees who have dependents or work on projects

SELECT ESSN FROM WORKS_ON SELECT ESSN FROM WORKS_ON
UNION UNION ALL
SELECT ESSN FROM DEPENDENTS SELECT ESSN FROM DEPENDENTS

Resuit is a multi-set (containing duplicate tuples).

) Can also be applied to Intersection and Difference
Given: Given:

WORKS_ON [ESSN, PNo, Hours] WORKS_ON [ESSN, PNo, Hours]
DEPENDENT [ESSN, Dep_Name, Sex, DOB, Relationship] DEPENDENT [ESSN, Dep_Name, Sex, DOB, Relationship]

Intersection | ¢ Produces a relation that includes the tuples that appear in both R1 and R2

e R1 & R2 must be union compatible.

27. List the ESSN'’s of employees who have dependents and work on projects
SELECT ESSN FROM WORKS_ON

INTERSECT

SELECT ESSN FROM DEPENDENTS

Given:
WORKS_ON [ESSN, PNo, Hours]
DEPENDENT [ESSN, Dep Name, Sex, DOB, Relationship]

Difference e Produces a relation that includes all

the tuples that appear in R1, but do not appear in R2.

e R1and R2 must be union compatible.

28. List the ESSN’s of employees who have dependents but do not work
on projects

SELECT ESSN FROM DEPENDENTS
MINUS
SELECT ESSN FROM WORKS_ON

Given:
WORKS_ON [ESSN, PNo, Hours]
DEPENDENT [ESSN, Dep Name, Sex, DOB, Relationship]

AUB commutative AUB = BUA
associative (AUB)UC = AUBUC)
AMB commutative AMB = BNA
associative (ANB)YNC = AN(BNC)
A-B not commutative A-B # B-A
not associative (A-B)—C # A—(B—C)

EXAMPLE (commutative):
SELECT * FROM WORKS_ON UNION SELECT * FROM WORKED_ON

= SELECT * FROM WORKED_ON UNION SELECT * FROM WORKS_ON
Renaming in SQL
e Qualifying attributes names or declaring an alias

29. Get employee names and the corresponding department names

SELECT EMPLOYEE.Name, DEPARTMENT.Name
FROM EMPLOYEE, DEPARTMENT
WHERE EMPLOYEE.Dno = DEPARTMENT.Dnumber

Given:
EMPLOYEE [NAME, SSN, BDATE, ADDRESS, SEX, SALARY, SUPERSSN, DNoj
DEPARTMENT [NAME, DNUMBER, MGRSSN, MGRSTARTDATE]

Foreign Keys:
EMPLOYEE.SUPERSSN - EMPLOYEE.SSN

EMPLOYEE.DNO - DEPARTMENT.DNUMBER
DEPARTMENT.MGRSSN - EMPLOYEE.SSN

Declaring an Alias

30. Get employee names and the corresponding supervisor names

SELECT SUBORDINATE.Name, SUPERVISOR.Name
FROM EMPLOYEE AS SUBORDINATE, EMPLOYEE AS SUPERVISOR
WHERE SUBORDINATE.SuperSSN = SUPERVISOR.SSN

Attributes can also be renamed using AS
Given:

EMPLOYEE [NAME, SSN, BDATE, ADDRESS, SEX, SALARY, SUPERSSN, DNUMBER]
Foreign Key:

EMPLOYEE.SUPERSSN - EMPLOYEE.SSN

