BMA1011- Table of Contents

1.	Week One Lecture Notes- A Toolbox for the Human BodyBody	1
	Week Two Lecture Notes- Cells	
3.	Week Three Lecture Notes- The Integumentary System	12
4.	Week Four Lecture Notes- The Musculoskeletal System	19
5.	Week Five Lecture Notes- Joints and Muscle Tissue	23
6.	Week Six Lecture Notes- Muscle Contraction	34
7.	Week Seven Lecture Notes- The Nervous System	40
8.	Week Nine Lecture Notes- The Brain and Spinal Cord	.48
9.	Week 10 Lecture Notes- The Autonomic Nervous System	58
10.	. Week 11 Lecture Notes- The Special Senses	70

Sample

Week One- A Toolbox for the Human Body

- Human body is broken up into 6 different levels of organisation
 - o 1. Chemical
 - Atoms are the building blocks of life
 - Atoms combine to form larger molecules and compounds
 - Where we study the different elements (e.g. Carbon, oxygen, nitrogen etc.)
 - The level at which we also study DNA and proteins

2. Cellular

- Contain organelles
- Different types of cells (some have similar functions but the size, shape and composition of each cell will determine the specific cell's function)
 - E.g. a smooth muscle cell has a different function to a nerve cell or a blood cell
 - The make-up of a cell will determine its function

o 3. Tissue

- A collection of cells of similar function form a tissue
- 4 types of tissue
 - Muscle tissue
 - Nervous tissue
 - Connective tissue
 - Epithelial tissue

4. Organ

- A collection of tissue forms an organ
- Can be made up of various types of tissue
 - E.g. a blood vessel is made up of smooth muscle tissue, connective tissue and epithelial tissue that work together to allow the organ to function

o 5. Organ system

 Each organ must be part of a system; working together with other organs that each play their own part

o 6. Organism

- A collection of systems that work together to form an organism
- Key points
 - Structure determines function
 - The body is organised into six different levels
 - Changes (or problems) at one level can affect other levels
 - The organ systems work independently (together)
- Functions of life
 - There are 11 organ systems that work together to maintain life
 - Skeletal System
 - Reproductive System

- Lymphatic System
- Nervous System
- Urinary System
- Digestive System
- Respiratory System
- Cardiovascular System
- Endocrine System
- Muscular System
- Integumentary System
- The organ systems work together to maintain life by performing the necessary life function. These include:
 - Maintain boundaries- separate the internal and external environments (e.g. our skin)
 - Movement- using our bones and muscles to move our bodies (e.g. walk or run) or to move substances and fluids (e.g. blood, urine) within our bodies
 - Responsiveness- responding to changes in our environment (e.g. removing your hand from a hot surface)
 - Digestion- break down our food into smaller substances that we can use (e.g. converting complex carbohydrates to simpler sugars)
 - Metabolism- all the chemical reactions in our bodies (e.g. producing energy)
 - Excretion- the removal of wastes (e.g. urea in urine)
 - Reproduction- replication or replacement of cells and the continuation of life (e.g. conceiving a child)
 - Growth- increase the number or size of cells (e.g. child to adolescent)

Homeostasis

- The process by which the body maintains a stable internal environment within narrow limits
- Accomplished using feedback mechanisms
 - NEGATIVE FEEDBACK (To reverse/stop/cease the stimulus)
 - Stimulus- alters internal environment
 - Receptor- detects stimulus
 - Control centre- receives message from receptor through nerve impulses
 - Effector- receives message from control centre through nerves or hormones; responds by altering the internal environment to reverse or cease the stimulus
 - HOMEOSTASIS is achieved
 - E.g. body temp increases above normal → stimulus detected by thermoreceptors → message via nerve impulses to brain (control centre) → message sent via nerve impulses to sweat glands → sweat glands release heat through sweat and brings body temp back down
 - Above cycle will continue until homeostasis is achieved

- POSITIVE FEEDBACK (enhances/prolongs the stimulus)
 - E.g. labour/child birth
 - Baby' head pushes on cervix → stretch-sensitive receptors in uterus send message to brain (control centre) via nerve impulse → brain sends message to muscles in wall of uterus via hormones → baby pushed further into birth canal
 - o Above cycle will continue until baby is born
- Control of homeostasis
 - Two systems mainly responsible for bringing about changes to maintain homeostasis
 - Nervous system
 - electrical pulses
 - o rapid and very short lived
 - Endocrine system
 - o Hormones
 - Slower acting/longer effect
 - Internal conditions controlled mostly by negative feedback
- O When is homeostasis required?
 - Temperature
 - Blood pressure
 - pH
 - Many others
 - Some things do not require homeostasis and are controlled locally
 - E.g. intracellular regulation
- The internal environment (inside of our body)
 - o Separated from the external environment by our skin
 - Body is full of cells
 - Extracellular fluid (ECF)
 - Around and between the cells
 - Made up of interstitial fluid (ISF) and plasma
 - ISF specifically surrounds the cells
 - What is in ECF that we need to regulate?
 - Gases (e.g. oxygen and carbon dioxide)
 - Water volume and pressure
 - o Ion levels, pH and temperature
 - Waste products
 - Conditions in ECF need to be **maintained within narrow limits-** this is done through **HOMEOSTASIS**
 - Intracellular fluid (ICF)- inside the cells
- Chemical reactions
 - o Breaking, forming or rearranging chemical bonds
 - Involve reactants (substrates) that body together to form products
 - E.g. Reactant A + Reactant B → Product AB

- Types of reactions
 - Anabolic (synthesis): Joining together
 - \circ E.g. A + B \rightarrow AB
 - Catabolic (decomposition): Breaking apart
 - \circ E.g. AB \rightarrow A + B
 - Exchange: Switching partners
 - E.g. $AB + CD \rightarrow AC + BD$
 - Reversible: Can go either way
 - \circ E.g. A + B $\leftarrow \rightarrow$ AB
- Rate of chemical reactions
 - Various things that affect the rate of chemical reactions that occur in the body
 - o Temperature
 - o Size
 - Concentration
 - Catalysts (Enzymes)
 - Two substrates bind to the active site of an enzyme → forms an enzyme substrate complex → internal rearrangement occurs forming a bond between the two substrates (using water) → product is created and released → enzyme is free to bind again
 - Enzymes are re-useable
 - Are site specific (only react with one particular type of substrate/reactant)
- Inorganic compounds, electrolytes and pH
 - o Inorganic compounds
 - Water H²O
 - Electrolytes
 - Acids
 - Bases
 - Salts
- Atoms and elements
 - o Atoms are the smallest units of elements
 - 20 elements in the body
 - Carbon (C), Hydrogen (H), Oxygen (O) and Nitrogen (N)
 - Sodium (Na), Calcium (Ca), Magnesium (Mg), Iron (Fe)
 - o lons: atoms with electrical charge
 - Cations (positive charge)
 - Hydrogen ion (H⁺)
 - Sodium ion (Na⁺)
 - Potassium ion (K⁺)
 - Calcium ion (Ca²⁺)
 - Anions (negative charge)
 - Chloride ion (Cl⁻)

- Iodine ion (I⁻)
- Hydroxyl ion (OH⁻)
- Bicarbonate ion (HCO₃)
- Opposite charges attract
- Electrolytes
 - Compounds that release ions in water
 - Acids
 - Release hydrogen ions (H⁺) when they're placed in water/solution
 - Makes the solution it's been placed in more acidic
 - Bases
 - Releases ions that bind with H⁺ (e.g. OH⁻)
 - Makes the solution less acidic (alkaline/basic)
 - Salts
 - Releases ions other than H⁺ or OH⁻
- o pH
- Measured in pH units on a scale of 1-14 (7 being neutral)
 - How many H⁺ is present
 - $7 = \text{neutral (equal H}^{+}/\text{OH}^{-})$
 - < 7 = more hydrogen ions (H⁺) than hydroxyl ions (OH⁻) so increasingly ACIDIC
 - > 7 = less hydrogen ions (H⁺) than hydroxyl ions (OH⁻) so increasingly
 BASIC/ALKALINE
- Blood homeostatic range: 7.35- 7.45
 - < 7.35 = acidosis
 - > 7.45 = alkadosis
- Organic compounds
 - o Differ from inorganic compounds in that they
 - Contain Carbon (C)
 - Are complex (inorganic compounds are simple)
 - Carbohydrates
 - Sugars and starches
 - Monosaccharides (e.g. glucose), disaccharides (e.g. sucrose, lactose) and polysaccharides (e.g. glycogen)
 - Functions
 - Energy
 - Building materials
 - Dietary sources (e.g. breads/pasta, fruits)
 - Lipids
 - Commonly known as fats
 - Hydrophobic (e.g. oil in water)
 - This makes them a great building material in the body
 - Diverse family with diverse functions
 - Triglycerides (solid or liquid depending on temperature)
 - Saturated fats

- Unsaturated fats
- Phospholipids
- Steroids (cholesterol, hormones)
- Others
- Dietary sources
- Proteins
 - 10-30% of our cell mass
 - Polypeptide of amino acids
 - Function of a protein is dependent on structure
 - Many functions
 - Structure and movement
 - Enzymes
 - Transport
 - pH and metabolism
 - Defence
 - Changes in body temperature and pH denature proteins
- Nucleic acids
 - Largest molecule in the body
 - Deoxyribonucleic acid (DNA)
 - Where our genes are found, instructions for all our cells/body
 - Ribonucleic acid (RNA)
 - O DNA is copied into RNA to make things like proteins
 - Packaged into chromosomes
 - Four nucleotides
 - Pairing = genetic code
 - Adenine (A) + Thymine (T)
 - Cytonine (C) + Guanine (G)
- Adenosine Triphosphate (ATP)
 - The energy that is stored within our cells
 - o Powers cellular work
 - ATP is stored in mitochondria
 - Conversion to ADP
 - Starts as Adenosine with three phosphate molecules attached
 - Water is added to the system which causes a phosphate to release; this also releases energy
 - ATP thus becomes ADP
 - ATP replenished
 - Energy from catabolism is used to reattach phosphate to ADP
 - E.g. glucose
 - ADP becomes ATP again
 - Cycle continues