Understanding Allergy and Asthma

Allergy and atopy;

- Allergic reaction → hypersensitive reaction of the immune system in response to harmless 'environmental' factors antigen. (Inappropriate immune response).
- Allergen → innocuous antigen; causes reaction (food or inhaled)
- Atopy → a genetic predisposition to develop allergy (atopic status)

Type 2 immunity & allergic inflammatory disease;

Eosinophils; release mediators that cause cell damage \rightarrow bronchial obstruction/constriction.

Mast cell; degranulate and release histamines → increases capillary permeability, allows movement of WBCs into the tissues.

B-cells; make IgE antibodies → bind to antigen, get allergic response → airway narrowing & inflammation.

APCs → present the antigen to the naïve T-cell, proliferates into Th2 cells → initiate response. Release cytokines.

Respiratory epithelium \rightarrow respond to allergen/antigen, produce cytokines \rightarrow mediates the whole response.

IL-4, IL-5, IL-13, IL-9 \rightarrow act on goblet cells to increase secretion of mucous \rightarrow obstruction.

Types of hypersensitivity;

Type 1;

- Immediate, contact mediated
- Systemic → anaphylactic reaction, can be life threatening.
- Local → food/nasal allergy or asthma.
- IgE binds to receptor on mast cell → intracellular signalling → degranulation of mast cells causing release of histamine and other immune mediators.

Type II;

- Humoral antibodies (IgG) → injure cells by predisposing them for lysis or phagocytosis.
 - Antibody-dependent cell-mediated cytotoxicity
 - Complement activation → targets cells
 - Can get into synapses and block receptors
 - Can get in the way of normal cell binding
 - Recruit neutrophils for phagocytosis.
- Eg; blood transfusion.

Type III;

- Humoral antibodies (IgG) form complexes with components of the blood → accumulate in the circulation (insoluble)
- Activate complement pathways → cell damage in blood vessels and tissues where the complexes are deposited eq; lung, skin, kidneys.

Type IV;

- Cell-mediated delayed response (not antibody-mediated)
- Mediated by T-lymphocytes (CD8+ or CD4+) → cell death and tissue injury
- Response to large insoluble antigens eg; viral clearance, autoimmune disease.
- Two forms;
 - Delayed-type → 1st exposure to antigen → CD4+ and MHCII → differentiation of naïve T-cells into Th1 cells → release of cytokines.
 - T-cell mediated → by cytotoxic CD8+, kill antigen bearing target cells by two mechanisms.

Type of hypersensitivity	Pathologic immune mechanisms	Mechanisms of tissue injury and disease
Immediate hypersensitivity: Type I	IgE antibody	Mast cells and their mediators (vasoactive amines, lipid mediators, cytokines)
Antibody mediated: Type II	IgM, IgG antibodies against cell surface or extracellular matrix antigens	Opsonization and phagocytosis of cells Complement- and Fc receptor—mediated recruitment and activation of leukocytes (neutrophils, macrophages) Abnormalities in cellular functions, e.g., hormone receptor signaling
Immune complex mediated: Type III	Immune complexes of circulating antigens and IgM or IgG antibodies	Complement- and Fc receptor— mediated recruitment and activation of leukocytes
T cell mediated: Type IV	CD4+ T cells (delayed- type hypersensitivity) CD8+ CTLs (T cell- mediated cytolysis)	Macrophage activation, cytokine-mediated inflammation Direct target cell killing, cytokine-mediated inflammation

Immunology of asthma;

- Hygiene hypothesis; being too clean increases the susceptibility of children to allergic diseases
 → suppresses the natural development of the immune system.
- Sensitisation → begins with dendritic cells (APCs) binding and presenting allergens to naïve T cells → become Th2 cells. Trigger B-cell production of allergen specific antibodies (IgE). Allergen is usually an otherwise harmful agent from the environment.
- Memory → re-exposure → binding of allergen to IgE → immune response (more aggressive & rapid)
- Manifestation → 2 phases;
 - Immediate → within 15 minutes (mast cell-IgE mediated)

- Late → 4-6 hours later, Th2 cell driven
- Driven by Th2 cytokines (IL-4, IL-5, IL-13)

Allergy and asthma;

- Early life allergic sensitisation increases the risk of asthma development eg; food allergies
- Asthma; chronic inflammatory airway disease (reversible airway obstruction)
 - Features;
 - Inflammation of the airways → infiltration of WBCs and oedema
 - Airway obstruction (mucous)
 - Enhanced bronchial responsiveness → hyperreactivity, enhanced smooth muscle contraction.
 - Remodelling of the airway → thickening of underlying tissues → further restriction.
- Bronchoconstriction → causes airway narrowing and reduces airflow, gas exchange. Symptoms eg; chest tightening, dyspnoea, cough, wheezing.
- Clinical presentation → wheezing, limited airflow, persistent cough (trying to clear mucous)
- Heterogenous disease → group of conditions characterised by a common set of clinical features
 → caused by different mechanisms
 - Young people allergically sensitised early in life
- Process:
 - Airway epithelium responds to exposure to the Ag → releases mediators for Th2 response.
 - Th2 cells produce cytokines → activating mast cells, B cells, innate lymphoid cells → cause airway narrowing, IgE and mucous production by goblet cells.

Treatment;

- If already have asthma, try and avoid triggers. Children with allergic asthma should avoid this as its possible to train the immune system to react correctly to allergens.
- β 2- agonists; bronchodilators \rightarrow short or long acting
- Oral/inhaled corticosteroids → anti-inflammatory effect (suppress cytokines that cause inflammation) → are slightly immunosuppressive.
- 10-15% of asthmatics don't respond very well → severe asthma

Anaphylaxis \rightarrow adrenaline administration \rightarrow reduces throat swelling, opens the airways, maintains heart function and blood pressure.

Antihistamines → target the H1-receptor for histamines in mast cells, smooth muscles and endothelium → treat allergic reactions in the nose. Target H2 receptor for in the gastrointestinal tract.

Mast cell stabilisers \rightarrow stop the degranulation of mast cells by inhibiting calcium channels (without calcium, the vesicles can't fuse to the membrane and degranulate \rightarrow stop release of histamine, inhalers, nasal sprays, eye drops.

Steroid based anti-inflammatories \rightarrow bind to glucocorticoid receptor and suppress the expression of genes that cause inflammation \rightarrow reduce swelling and tightening in the airways. Target pretty much everything.

Leukotriene modifiers → prevent the action of leukotrienes (chemicals the body release during Th2 response)

Monoclonal Abs (emerging) \rightarrow have actions downstream of the allergic cascade.