Lectures 10/11, Module 1 - DNA, Protein and the Central Dogma:

- DNA
 - o Genetic material
 - Polymer consisting of nucleotides
 - Nucleotides consist of a nitrogenous base, a pentose sugar (deoxyribose) and a phosphate group
 - Bases can be
 - Adenine (A)
 - Thymine (T)
 - Guanine (G)
 - Cvtosine (C)
 - Arranged in a double helix
 - Sugar phosphate backbones covalently bonded to base pairs
 - A-T (joined by 2 hydrogen bonds) and C-G (joined by 3 hydrogen bonds)
 - A and G are purines (two organic rings) and T and C are Pyrimidines (one organic ring)
 - Backbones run antiparallel (in opposite directions)
- DNA Replication
 - Semi-conservative
 - Parental molecules have two complementary strands of DNA, each base pair is joined by hydrogen bonding
 - The strands separate and each parental strand serves as a template for a new strand
 - Complementary nucleotides line up and are connected to form two new double helixes (each consisting of an old parental strand and a new strand)
 - New strand=limited methylation, old strand=fully methylated
 - A closer look at replication
 - Replication begins at particular sites with a specific sequence of nucleotides called origins of replication
 - Proteins attach to this sequence and separate the two strands forming a replication bubble
 - Replication proceeds in both directions
 - Multiple bubbles form and eventually fuse
 - At the ends of each bubble replication forks form
 - Y-shaped regions where the parental DNA is being unwound
 - Helicases are enzymes that untwist the double helix at the replication forks
 - After the strands are separated, single stranded binding proteins bind to the DNA strands and keep them from repairing (keeps them stable)
 - Untwisting of the double helix causes tighter twisting and strain ahead of the replication fork
 - Topoisomerase relieves this strain by breaking, swivelling and re-joining the strands
 - The enzymes that synthesise DNA cannot initiate the synthesis of a polynucleotide they can only add base pairs to an already existing chain that is base-paired with the parent strand
 - The enzyme primase synthesises RNA primers using the DNA strand as a template
 - RNA nucleotides are added one at a time
 - The completed primer is generally about 5-10 nucleotides long
 - The new DNA strand will start from the 3' end of the RNA primer

- New nucleotides are added by nucleoside triphosphates
- New strand can elongate only in 5' to 3' direction and nucleotides can only add to that 3' end of the RNA primer
 - DNA has "one direction"
- · Leading strand
 - DNA pol III remains at the replication fork on the new complementary strand and continuously adds nucleotides as the fork progresses
 - Only one RNA primer is required

- Lagging strand
 - On the other strand, DNA pol III must work away from the replication fork in the mandatory
 5' 3' direction

- This strand in synthesised in a series of segments (Okazaki fragments)
- Each fragment requires a separate primer

- Ends of DNA Molecules
 - The ends of eukaryotic chromosomal DNA consist of telomeres (multiple repetitions of one short nucleotide sequence) that do not contain genes
 - Buffer that protects the organism's genes by postponing the erosion of genes located near the ends of DNA molecules
- Repairing DNA
 - Incorrectly paired, or altered nucleotides are corrected by enzymes (approx. 130 in humans) before they become mutations
 - Nuclease enzymes cut damaged DNA strands at two points so the segment can be removed
 - Repair synthesis by DNA polymerase fills in the missing nucleotides
 - DNA ligase seal the new DNA to the old DNA
- A summary:

A summary of the enzymes and processes involved in DNA replication

The leading stand is processed in the process of the proce

Must be able to redraw this - know what all the enzymes do!!!!! Must understand DNA replicates
in one direction (leading and lagging)

Chromosomes

- Histones
 - Responsible for the first level of DNA packaging into chromatin
 - H2A, H2B, H3, and H4 are most common in chromatin
- Nucleosomes (10nm fibre)
 - Consists of DNA wound twice around a protein core composed of two molecules each of the four main histone types
 - The amino end (N-terminus, or tail) of each histone extends outward from the nucleosome
- 30nm fibre
 - Coiling due to interactions between the histone tails of one nucleosome and the linked DNA nucleosomes on either side
- Looped domains (300nm fibre)
 - 30nm fibre forms loops attached to a chromosome scaffold made of proteins
- Metaphase chromosome
 - Looped domains coil and fold to further compact the chromatin to produce a characteristic metaphase chromosome
- The Central Dogma
 - DNA -> RNA -> Proteins
 - Transcription:
 - Initiation
 - The DNA sequence where RNA polymerase attaches and initiates transcription is known as the promoter
 - The promoter includes the transcription start point (a single nucleotide)
 - In bacteria, the RNA polymerase recognises the start point
 - In eukaryotes, transcription factors mediate the binding of RNA polymerase and the initiation process
 - The whole complex of transcription factors and RNA polymerase II bound to the promoter is called a transcription initiation complex.

 Once the RNA polymerase is attached in the correct orientation, it unwinds the DNA strands and starts to transcribe the template

Elongation

- RNA polymerase moves along the DNA and continues to unwind it and add nucleotides at the 3' end of the growing RNA strand
- 5' 3' direction
- The RNA strand peels away and the DNA double helix reforms
- A single gene can be transcribed simultaneously by several molecules of RNA polymerase following each other

Termination

- Bacteria
 - Transcription proceeds through a terminator DNA sequence
 - The transcribed RNA of the terminator sequence functions as the termination signal
 - The polymerase detaches from the DNA and releases the transcript which can be immediately translated

Eukaryotes

- In eukaryotes, RNA polymerase II transcribes a sequence on the DNA called the polyadenylation signal sequence, which codes for a polyadenylation signal (AAUAAA) in the pre-mRNA.
- Then, at a point about 10–35 nucleotides downstream from the AAUAAA signal, proteins associated with the growing RNA transcript cut it free from the polymerase, releasing the pre-mRNA.
- RNA Processing (Eukaryotes)
 - Alteration of pre-mRNA ends
 - The 5 end is synthesized first; it receives a 5 cap (modified form of G nucleotide) added onto the 5 end after transcription of the first 20–40 nucleotides.
 - An enzyme adds 50–250 more adenine (A) nucleotides, forming a poly-A tail at the 3' end.
 - The 5 cap and poly-A tail share several important functions.
 - Facilitate the export of the mature mRNA from the nucleus
 - Help protect the mRNA from degradation by hydrolytic enzymes.
 - Help ribosomes attach to the 5 end of the mRNA once the mRNA reaches the cytoplasm.
 - Split Genes and RNA Splicing
 - Eukaryotic Genes and their RNA transcripts have long non-coding stretches that are spliced out
 - Introns
 - Non-coding sequences (of DNA and RNA) that lie between coding sequences
 - Exons
 - The coding areas (of RNA and DNA)
 - Sequences of RNA that exit the nucleus
 - Introns are cut out from the molecule and the exons are joined together to form the mRNA involved in translation