
LECTURE 1 INTRODUCTION 

1.1 What is econometrics?  

It’s a bridge between economic theory and the real world. Use theory from economics, tools from statistics, and 

data. To test economic hypotheses, to forecast, to answer “how much” question 

1.2 Overview of the Econometric Model 

• Economic theory – the average or systematic behaviour, identifies relationship b/w economic variables, make 

predictions about the direction of outcomes. e.g., 𝑞𝑑 = 𝑓(𝑝, 𝑝𝑠, 𝑝𝑐 , 𝑦) 

• Econometrics – actual behaviours depend upon the sum of a systematic component (economic theory) and a 

random or unpredictable component 𝜀. e.g., 𝑞𝑑 = 𝑓(𝑝, 𝑝𝑠, 𝑝𝑐 , 𝑦) + 𝜀 
- Random error 𝜀: 

o reflects the intrinsic uncertainty in eco activity (unpredictable random behaviour) 

o accounts for factors omitted from the model (any factors other than x that affect y) 

o represents approximation error arising from the assumed linear functional form  

▪ a systematic component of y is ‘explained’ by 𝑥;  

▪ a random component of y is not explained by 𝑥, it’s called random error 𝜀 

- Functional form (only consider linear equation in BE): 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯ + 𝛽𝑘𝑥𝑘𝑖 + 𝜀 

o get a sample of data on {𝑦𝑖, 𝑥𝑖} to learn unknown parameters {𝛽0, 𝛽1, … , 𝛽𝑘} 
1.3 Types of Data  

- time series: follow a country, region, firm or individual over time  

- cross-sectional: collects information on several countries, regions, firms or individuals at a single point in time  

- panel: follows several cross-sectional units over time  

 

LECTURE 2 BASIC LINEAR MODEL: ASSUMPTIONS 

2.1 The Linear Regression Model  

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯ + 𝛽𝑘𝑥𝑘𝑖 + 𝜀𝑖  
- the intercept 𝛽0 represents the average value of 𝑦 when all the 𝑥’s are zero (meaningless if there is no x be 

zero from sample data)  

- the slope parameter 𝛽𝑗 represents the expected change in 𝑦 associated with a unit change in 𝑥𝑗, all else 

constant 

 

 

 

Interpretation: holding all else constant, y changes by__ unit on average when change 𝑥1 by 1 unit 

2.2 Assumptions about the Linear Regression Model 

MR1: The correct model is: 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯ + 𝛽𝑘𝑥𝑘𝑖 + 𝜀𝑖 

- Omitted relevant variables: biased OLS estimators if omitted Z is correlated with original 𝑋1 

- Inclusion irrelevant variables: unbiased OLS estimators but larger variance of estimators (not BLUE) 

MR2: 𝐸[𝜀𝑖|𝑥𝑖] = 0 => the only assumption to ensure unbiasedness 

- the error term has an expected value of 0, given any value of the 𝑥’s 

- the 𝑥’s does not change the expected value of the random error 𝜀 

- but doesn’t mean zero sample average of the error 𝐸[𝜀] ≠ 0 

MR3: 𝑉𝑎𝑟[𝜀𝑖|𝑥𝑖] = 𝜎2 Homoskedasticity => ensure consistency  

- The variance of the random errors is constant and independent of the 𝑥’s.  

- Heteroskedasticity: unbiased, but no longer BLUE (wrong 𝑠𝑒(𝑏𝑗) and wrong t-test) 

MR4: any pair of random errors are uncorrelated  

𝐶𝑜𝑣(𝜀𝑖 , 𝜀𝑗|𝑥𝑖 , 𝑥𝑗) = 0    for all 𝑖, 𝑗 = 1,2, … 𝑁, 𝑖 ≠ 𝑗 

- Autocorrelation: unbiased, but no longer BLUE 

MR5a: 𝑥 are not-random, 𝑥 values are “fixed in repeated sampling 

- the values of all 𝑥’s are known prior to observing the (realized) values of dependent variable. 

MR5b: Non-collinearity 

- any one of the 𝑥’s is not an exact linear function of any of the other 𝑥’s.  

- none of the 𝑥 is redundant  

- Exact Collinearity: unbiased, but no longer BLUE, the least squares procedure will fail 



2.3 The Least Squares Principle 

• the Least Squares Principle estimates {𝛽0, 𝛽1, … , 𝛽𝑘} such that the squared difference between the fitted line and 

the observed value of 𝑦 is minimized. 

a) Estimators {𝑏0, 𝑏1, … , 𝑏𝑘} 

b) Fitter line:  𝑦𝑖̂ = 𝑏0 + 𝑏1𝑥1𝑖 + 𝑏2𝑥2𝑖 + ⋯ + 𝑏𝑘𝑥𝑘𝑖 

c) Least squares residuals: 𝑒𝑖̂ = (𝑦𝑖 − 𝑦𝑖̂) = 𝑦𝑖 − (𝑏0 + 𝑏1𝑥1𝑖 + 𝑏2𝑥2𝑖 + ⋯ + 𝑏𝑘𝑥𝑘𝑖) 

➢ Why min the squared diff ∑ eî
2
 not ∑ eî – the minimum value would be at -∞ so the fitted line could be set 

arbitrarily “high” 

➢ Why not set the fitted line ∑ 𝑒𝑖̂ = 0 – a large positive value of 𝑒𝑖̂ > 0 would cancel out a large negative value 

𝑒𝑖̂ < 0. In addition any fitted line passing through the (sample) means of y an x would satisfy this criteria 

(infinite number of potential fitted line)  

• Minimise the sum of squared errors: 𝑆 = ∑ eî
2
 

min
{𝛽0,𝛽1,…,𝛽𝑘}

𝑆 = ∑[𝑦𝑖 − (𝑏0 + 𝑏1𝑥1𝑖 + 𝑏2𝑥2𝑖 + ⋯ + 𝑏𝑘𝑥𝑘𝑖)]2

𝑁

𝑖=1

 

first order conditions, for 𝛽0: 

𝜕𝑆

𝜕𝛽0
= −2 ∑[𝑦𝑖 − (𝑏0 + 𝑏1𝑥1𝑖 + 𝑏2𝑥2𝑖 + ⋯ + 𝑏𝑘𝑥𝑘𝑖)]

𝑁

𝑖=1

= 0 

for 𝛽𝑗, j = 1,2…k 

𝜕𝑆

𝜕𝛽𝑗
= −2 ∑[𝑦𝑖 − (𝑏0 + 𝑏1𝑥1𝑖 + 𝑏2𝑥2𝑖 + ⋯ + 𝑏𝑘𝑥𝑘𝑖)]

𝑁

𝑖=1

𝑥𝑗𝑖 = 0 

 

2.4 Properties of the OLS Residuals  

OLS (Ordinary Least Squares) 

- Estimators {𝑏0, 𝑏1, … , 𝑏𝑘} 

- Random variables {𝑏0, 𝑏1, … , 𝑏𝑘}: values depend on the sample data y and x 

- Least squares estimates: when the sample data are substituted into the formulas we obtain numbers that are 

the observed values of random variables 

P1: when there is an intercept term 𝛽0, ∑ 𝑒𝑖̂ = 0 

P2: for each 𝛽𝑗, j = 1,2…k 

∑ 𝑒𝑖̂𝑥1𝑖 = 0 and ∑ 𝑒𝑖̂𝑥2𝑖 = 0 and … ∑ 𝑒𝑖̂𝑥𝑘𝑖 = 0 

P3: these two properties imply:  

 ∑ 𝑒𝑖̂𝑦𝑖̂ = ∑ 𝑒𝑖̂[𝑏0 + 𝑏1𝑥1𝑖 + 𝑏2𝑥2𝑖 + ⋯ + 𝑏𝑘𝑥𝑘𝑖] 

  =  𝑏0 ∑ 𝑒𝑖̂ + 𝑏1 ∑ 𝑒𝑖̂𝑥1𝑖 + ⋯ 𝑏𝑘 ∑ 𝑒𝑖̂𝑥𝑘𝑖 = 0 

  



LECTURE 3 BASIC LINEAR MODEL: STATISTICAL PROPERTIES 

3.1 The Sampling Properties of the OLS Estimators  

- The means and variances of the estimators {𝑏0, 𝑏1, … , 𝑏𝑘} provide location and dispersion of the probability 

distribution of {𝑏0, 𝑏1, … , 𝑏𝑘}. 

• OLS Estimator is an Unbiased Estimator 

𝐸(𝑏𝑗) = 𝛽𝑗 for j=1,2, …k 

𝐸(𝑏0) = 𝛽0 

- Assumption 𝐸(𝜀𝑖|𝑥𝑖) = 0 for all 𝑖 (conditional expectation: the average of 𝜀𝑖 over all outcomes in 𝑥𝑖) 

- When the expected value of any estimator of a population parameter is equal to the true value of that 

population parameter, the estimator is said to be unbiased 

- Intuition: if say 10,000 sample of size N were collected and 𝑏𝑗 were calculated for each of these 10,000 

samples, the average value of these estimates would be equal to 𝛽𝑗 

- Unbiasedness does not mean a specific estimate of 𝑏𝑗 is “close” to the true population parameter 𝛽𝑗, we never 

know how close they are, it depends on variance.  

- We say an estimator is unbiased not an estimate 

• Variability of the OLS estimators: 

- the lower the variance of an estimator, the greater the sampling precision of the estimator 

- if any of these OLS assumptions don’t hold, the expressions for 𝑉𝑎𝑟(𝑏1), 𝑉𝑎𝑟(𝑏2) …  𝑉𝑎𝑟(𝑏𝑘), 𝐶𝑜𝑣(𝑏𝑗, 𝑏𝑘) 

will be wrong. Not the Min 𝑉𝑎𝑟(𝑏𝑗) 

o MR2: 𝐸(𝜀𝑖|𝑥𝑖) = 0 

o MR3: 𝑉𝑎𝑟(𝜀𝑖|𝑥𝑖) = 𝜎2 

o MR4: 𝐶𝑜𝑣(𝜀𝑖 , 𝜀𝑗|𝑥𝑖, 𝑥𝑗) = 0 

o MR5a: The X’s are not-random 

- Factors affect 𝑉𝑎𝑟(𝑏𝑗) for j = 1, 2, … K 

𝑉𝑎𝑟(𝑏𝑗) =
𝜎2

∑(𝑋𝑗𝑖  − 𝑋̅𝑗)2
 

o ↑ 𝜎2 ↑ 𝑉𝑎𝑟(𝑏𝑗) => randomness 

o ↑  ∑(𝑋𝑗𝑖  − 𝑋̅𝑗)2 ↓ 𝑉𝑎𝑟(𝑏𝑗) => dispersion in the values of 𝑋 

o ↑ sample size ↓ 𝑉𝑎𝑟(𝑏𝑗) => normality, greater job in closing to the sample mean 

o ↑ 𝑐𝑜𝑟𝑟(𝑋𝑗, 𝑋𝑖) ↑ 𝑉𝑎𝑟(𝑏𝑗) for 𝑖 ≠ 𝑗 => collinearity, higher difficulty disentangling separate effects 

• OLS estimator is a Linear Estimator (weighted sum of y’s) 

𝑏2 =
∑ (𝑦𝑖 − 𝑦̅)(𝑥𝑖 − 𝑥̅)𝑁

𝑖=1

∑ (𝑥𝑖 − 𝑥̅)2𝑁
𝑖=1

=
∑ 𝑦𝑖(𝑥𝑖 − 𝑥̅)𝑁

𝑖=1

∑ (𝑥𝑖 − 𝑥̅)2𝑁
𝑖=1

= ∑ 𝑤𝑖𝑦𝑖 

∑ 𝑦̅(𝑥𝑖 − 𝑥̅)𝑁
𝑖=1 = 𝑦̅ ∑ (𝑥𝑖 − 𝑥̅)𝑁

𝑖=1 = 𝑦̅(0) = 0  

𝑤𝑖 =
(𝑥𝑖 − 𝑥̅)

∑ (𝑥𝑖 − 𝑥̅)2𝑁
𝑖=1

 

3.2 The Gauss-Markov Theorem 

- Under the assumptions of the linear regression model (MR1–MR5), the OLS estimators {𝑏0, 𝑏1, … , 𝑏𝑘} have 

the of Best Linear Unbiased Estimators (BLUE) {𝛽0, 𝛽1, … , 𝛽𝑘} 

- smallest variance of all linear and unbiased estimators 

- We can’t say it as the best estimator of all possible estimators, but in this course, we don’t consider non-linear 

estimators, just remember these two factors  

- The Gauss-Markov theorem does not depend on the assumption of normality 

- The Gauss-Markov theorem applies to OLS estimators – not an OLS estimate from a single sample  

- BLUE is not one of MLMR assumptions, Gauss-Markov sets the BLUE conclusion if all assumptions held.  

3.3 Estimator of the Error Variance  

𝑒𝑖̂ = 𝑦𝑖 − 𝑦̂𝑖 = 𝑦𝑖 − {𝑏0 + 𝑏1𝑥1𝑖 + ⋯ 𝑏𝑘𝑥𝑘𝑖} 

Use the unbiased estimator of the error variance: 

𝜎̂2 =
∑ 𝑒𝑖̂

2

(𝑁 − 𝐾 − 1)
 𝑜𝑟

∑ 𝑒𝑖̂
2

(𝑁 − 𝐾)
 

where 𝑘 + 1 is the number of parameters being estiamted. The simple regression model 𝑘 + 1 = 2 

 

Both are correct: sample size takes away the number 

of coefficients including intercepts.  



• EViews get 𝜎̂2: 

- S. E of regression = standard error of regression gives 𝜎̂ 

- Sum Squared resid = SSR sum of squared residence gives ∑ eî
2
 

𝑅𝑆𝑆 = ∑(𝑦𝑖 − 𝑦̂)2 = ∑ 𝑒𝑖̂
2 = 𝜎̂2 ∗ (𝑁 − 𝐾 − 1) 

- S. D dependent var = standard deviation of dependent variable 𝑠 or 𝜎̂𝑦 

𝑇𝑆𝑆 = ∑(𝑦𝑖 − 𝑦̅)2 = 𝑠2 ∗ (𝑁 − 1) 

• EViews get covariance matrix:  

➢ After OLS estimation: view – covariance matrix  

 

 

 

 

- Use the entries on the main diagonal to get the estimated variances of the estimates  

- Use the entries on the off-diagonal to get the estimated covariances of the estimates  

 

3.4 Measuring Goodness of Fit in the MLRM (multiple linear regression model) 

• RSS: Residual Sum of Squares (= SSR) 

TSS: Total Sum of Squares  

𝑅2 shows the variation in the dependent variable y about its mean that is explained by the expression model (i.e. 

explained by all of the explanatory variables) 

𝑅2 = 1 −
∑ 𝑒𝑖̂

2

∑(𝑦𝑖 − 𝑦̅)2
= 1 −

𝑅𝑆𝑆

𝑇𝑆𝑆
 

𝑅2 also measures the degree of linear association b/w the values of 𝑦𝑖 and the fitted values 𝑦̂𝑖 

𝑅2 = [𝑐𝑜𝑟𝑟̂(𝑦, 𝑦̅)]2 

• Problem of R-square 

𝑅2 may too larger by including irrelevant x (in the extreme case, 𝑅2 = 1 by including (𝑁 − 1) 𝑋 variables) 

-  For Unrestricted and Restricted Model, it must be, 𝑅𝑆𝑆𝑅 ≥ 𝑅𝑆𝑆𝑈𝑅 𝑜𝑟𝑅𝑆𝑆𝑈𝑅 ≤ 𝑅𝑆𝑆𝑅 , 𝑠𝑜 𝑅2
𝑈𝑅 ≥ 𝑅2

𝑅 

• Solution of R-square 

- Use the adjusted 𝑅2 symbolized as 𝑅̅2 

𝑅̅2 = 1 −
∑ 𝑒𝑖̂

2 𝑁 − 𝐾 − 1⁄

∑ (𝑦𝑖 − 𝑦̅)2 𝑁 − 1⁄
= 1 −

𝜎̂2

𝜎̂𝑦
2 

- 𝑅̅2 does not always rise with additional 𝑋’𝑠 due to the ‘degrees of freedom’ correction (𝑁 − 𝐾 − 1) 

𝑅̅2 = 1 − {(1 − 𝑅2)
(𝑁 − 1)

(𝑁 − 𝐾 − 1)
} 

- 𝑅̅2 can be negative, if 𝑁 is sufficiently small and 𝐾 sufficiently large (𝑅2 cannot be negative) 

𝑅̅2 < 𝑅2 

- 𝑅̅2 no longer measures the percent of variation in the dependent variable explained by the model. How to 

interpretation?  

 

 


