LECTURE 1 INTRODUCTION

1.1 What is econometrics?

It's a bridge between economic theory and the real world. Use theory from economics, tools from statistics, and data. To test economic hypotheses, to forecast, to answer "how much" question

1.2 Overview of the Econometric Model

- Economic theory the average or systematic behaviour, identifies relationship b/w economic variables, make predictions about the direction of outcomes. e.g., $q_d = f(p, p_s, p_c, y)$
- Econometrics actual behaviours depend upon the sum of a systematic component (economic theory) and a random or unpredictable component ε . e.g., $q_d = f(p, p_s, p_c, y) + \varepsilon$
 - Random error ε:
 - o reflects the intrinsic uncertainty in eco activity (unpredictable random behaviour)
 - o accounts for factors omitted from the model (any factors other than x that affect y)
 - o represents approximation error arising from the assumed linear functional form
 - a systematic component of y is 'explained' by x;
 - a random component of y is <u>not explained</u> by x, it's called random error ε
 - Functional form (only consider <u>linear</u> equation in BE):

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_k x_{ki} + \varepsilon$$

o get a sample of data on $\{y_i, x_i\}$ to learn unknown parameters $\{\beta_0, \beta_1, ..., \beta_k\}$

1.3 Types of Data

- time series: follow a country, region, firm or individual over time
- cross-sectional: collects information on several countries, regions, firms or individuals at a single point in time
- panel: follows several cross-sectional units over time

LECTURE 2 BASIC LINEAR MODEL: ASSUMPTIONS

2.1 The Linear Regression Model

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_k x_{ki} + \varepsilon_i$$

- the intercept β_0 represents the average value of y when all the x's are zero (meaningless if there is no x be zero from sample data)
- the slope parameter β_j represents the expected change in y associated with a unit change in x_j , all else constant

$$eta_j = rac{E[y|\mathbf{X}]}{\Delta X_j} \; igg|_{ ext{all other X's constant}} \; ext{for } j=1,2,\dots K$$

Interpretation: holding all else constant, y changes by unit on average when change x_1 by 1 unit

2.2 Assumptions about the Linear Regression Model

MR1: The correct model is:

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_k x_{ki} + \varepsilon_i$$

- Omitted relevant variables: biased OLS estimators if omitted Z is correlated with original X_1
- <u>Inclusion irrelevant variables:</u> unbiased OLS estimators but larger variance of estimators (not BLUE)

MR2: $E[\varepsilon_i|x_i] = 0$ => the only assumption to ensure <u>unbiasedness</u>

- the error term has an expected value of 0, given any value of the x's
- the x's does not change the expected value of the random error ε
- but doesn't mean zero sample average of the error $E[\varepsilon] \neq 0$

MR3: $Var[\varepsilon_i|x_i] = \sigma^2$ Homoskedasticity => ensure consistency

- The variance of the random errors is constant and independent of the x's.
- Heteroskedasticity: unbiased, but no longer BLUE (wrong $se(b_i)$ and wrong t-test)

MR4: any pair of random errors are uncorrelated

$$Cov(\varepsilon_i, \varepsilon_j | x_i, x_j) = 0$$
 for all $i, j = 1, 2, ..., N, i \neq j$

- Autocorrelation: unbiased, but no longer BLUE

MR5a: x are not-random, x values are "fixed in repeated sampling

- the values of all x's are known prior to observing the (realized) values of dependent variable.

MR5b: Non-collinearity

- any one of the x's is not an exact linear function of any of the other x's.
- none of the x is redundant
- Exact Collinearity: unbiased, but no longer BLUE, the least squares procedure will fail

2.3 The Least Squares Principle

- the Least Squares Principle estimates $\{\beta_0, \beta_1, ..., \beta_k\}$ such that the <u>squared</u> difference between the fitted line and the observed value of y is <u>minimized</u>.
 - a) Estimators $\{b_0, b_1, \dots, b_k\}$
 - b) Fitter line: $\hat{y}_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + \dots + b_k x_{ki}$
 - c) Least squares residuals: $\hat{e}_i = (y_i \hat{y}_i) = y_i (b_0 + b_1 x_{1i} + b_2 x_{2i} + \dots + b_k x_{ki})$
 - ▶ Why min the squared diff $\sum \widehat{e_1}^2$ not $\sum \widehat{e_1}$ the minimum value would be at -∞ so the fitted line could be set arbitrarily "high"
 - Why not set the fitted line $\sum \hat{e_i} = 0$ a large positive value of $\hat{e_i} > 0$ would cancel out a large negative value $\hat{e_i} < 0$. In addition any fitted line passing through the (sample) means of y an x would satisfy this criteria (infinite number of potential fitted line)
- Minimise the sum of squared errors: $S = \sum \hat{e}_1^2$

$$\min_{\{\beta_0,\beta_1,\dots,\beta_k\}} S = \sum_{i=1}^N [y_i - (b_0 + b_1 x_{1i} + b_2 x_{2i} + \dots + b_k x_{ki})]^2$$

first order conditions, for β_0 :

$$\frac{\partial S}{\partial \beta_0} = -2 \sum_{i=1}^{N} [y_i - (b_0 + b_1 x_{1i} + b_2 x_{2i} + \dots + b_k x_{ki})] = 0$$

for
$$\beta_i$$
, $j = 1,2...k$

$$\frac{\partial S}{\partial \beta_j} = -2 \sum_{i=1}^{N} [y_i - (b_0 + b_1 x_{1i} + b_2 x_{2i} + \dots + b_k x_{ki})] x_{ji} = 0$$

2.4 Properties of the OLS Residuals

OLS (Ordinary Least Squares)

- **Estimators** $\{b_0, b_1, \dots, b_k\}$
- Random variables $\{b_0, b_1, ..., b_k\}$: values depend on the sample data y and x
- *Least squares estimates:* when the sample data are substituted into the formulas we obtain numbers that are the observed values of random variables

P1: when there is an intercept term β_0 , $\sum \hat{e_i} = 0$

P2: for each β_i , j = 1,2...k

$$\sum \widehat{e_i} x_{1i} = 0$$
 and $\sum \widehat{e_i} x_{2i} = 0$ and ... $\sum \widehat{e_i} x_{ki} = 0$

P3: these two properties imply:

$$\sum \widehat{e_i} \widehat{y_i} = \sum \widehat{e_i} [b_0 + b_1 x_{1i} + b_2 x_{2i} + \dots + b_k x_{ki}]$$

= $b_0 \sum \widehat{e_i} + b_1 \sum \widehat{e_i} x_{1i} + \dots b_k \sum \widehat{e_i} x_{ki} = 0$

LECTURE 3 BASIC LINEAR MODEL: STATISTICAL PROPERTIES

3.1 The Sampling Properties of the OLS Estimators

- The means and variances of the estimators $\{b_0, b_1, ..., b_k\}$ provide *location* and *dispersion* of the probability distribution of $\{b_0, b_1, \dots, b_k\}$.
- **OLS Estimator is an Unbiased Estimator**

$$E(b_j) = \beta_j$$
 for j=1,2, ...k
 $E(b_0) = \beta_0$

- Assumption $E(\varepsilon_i|x_i) = 0$ for all i (conditional expectation: the average of ε_i over all outcomes in x_i)
- When the *expected value* of any estimator of a population parameter is *equal to* the *true value* of that population parameter, the estimator is said to be unbiased
- <u>Intuition</u>: if say 10,000 sample of size N were collected and b_i were calculated for each of these 10,000 samples, the average value of these estimates would be equal to β_i
- Unbiasedness does *not* mean a specific estimate of b_i is "close" to the true population parameter β_i , we never know how close they are, it depends on variance.
- We say an estimator is unbiased *not* an estimate

Variability of the OLS estimators:

- the *lower* the variance of an estimator, the greater the sampling precision of the estimator
- if any of these OLS assumptions don't hold, the expressions for $Var(b_1)$, $Var(b_2)$... $Var(b_k)$, $Cov(b_i, b_k)$ will be wrong. Not the Min $Var(b_i)$ Sampling Distribution for b2

o MR3:
$$Var(\varepsilon_i|x_i) = \sigma^2$$

$$\circ \quad MR4: Cov(\varepsilon_i, \varepsilon_i | x_i, x_j) = 0$$

- o MR5a: The X's are not-random
- Factors affect $Var(b_i)$ for j = 1, 2, ... K

$$Var(b_j) = \frac{\sigma^2}{\sum (X_{ji} - \bar{X}j)^2}$$

$$\circ \uparrow \sigma^2 \uparrow Var(b_i) \Rightarrow \text{randomness}$$

- ↑ $\sum (X_{ii} \bar{X}_j)^2 \downarrow Var(b_i) =>$ dispersion in the values of X
- o \uparrow sample size $\downarrow Var(b_i) =>$ normality, greater job in closing to the sample mean
- \circ $\uparrow corr(X_i, X_i) \uparrow Var(b_i)$ for $i \neq j =>$ collinearity, higher difficulty disentangling separate effects
- **OLS estimator is a Linear Estimator** (weighted sum of y's)

$$b_{2} = \frac{\sum_{i=1}^{N} (y_{i} - \bar{y})(x_{i} - \bar{x})}{\sum_{i=1}^{N} (x_{i} - \bar{x})^{2}} = \frac{\sum_{i=1}^{N} y_{i}(x_{i} - \bar{x})}{\sum_{i=1}^{N} (x_{i} - \bar{x})^{2}} = \sum w_{i}y_{i}$$

$$\sum_{i=1}^{N} \bar{y}(x_{i} - \bar{x}) = \bar{y}\sum_{i=1}^{N} (x_{i} - \bar{x}) = \bar{y}(0) = 0$$

$$w_{i} = \frac{(x_{i} - \bar{x})}{\sum_{i=1}^{N} (x_{i} - \bar{x})^{2}}$$

3.2 The Gauss-Markov Theorem

- Under the assumptions of the linear regression model (MR1–MR5), the OLS estimators $\{b_0, b_1, ..., b_k\}$ have the of Best Linear Unbiased Estimators (BLUE) $\{\beta_0, \beta_1, ..., \beta_k\}$
- smallest variance of all linear and unbiased estimators
- We can't say it as the best estimator of all possible estimators, but in this course, we don't consider non-linear estimators, just remember these two factors
- The Gauss-Markov theorem *does not* depend on the assumption of *normality*
- The Gauss-Markov theorem applies to OLS estimators *not* an OLS estimate from a single sample
- BLUE is not one of MLMR assumptions, Gauss-Markov sets the BLUE conclusion if all assumptions held.

3.3 Estimator of the Error Variance

$$\widehat{e}_i = y_i - \widehat{y}_i = y_i - \{b_0 + b_1 x_{1i} + \cdots b_k x_{ki}\}$$

Use the unbiased estimator of the error variance:

$$\hat{\sigma}^2 = \frac{\sum \widehat{e_i}^2}{(N - K - 1)} \text{ or } \frac{\sum \widehat{e_i}^2}{(N - K)}$$
Both are correct: sample size takes away the number of coefficients including intercepts.

where k + 1 is the number of parameters being estiamted. The simple regression model k + 1 = 2

- **EViews** get $\hat{\sigma}^2$:
 - S. E of regression = standard error of regression gives $\hat{\sigma}$
 - Sum Squared resid = SSR sum of squared residence gives $\sum \hat{e}_1^2$

$$RSS = \sum_{i} (y_i - \hat{y})^2 = \sum_{i} \hat{e_i}^2 = \hat{\sigma}^2 * (N - K - 1)$$
S. D dependent var = standard deviation of dependent variable *s* or $\hat{\sigma}_y$

$$TSS = \sum_{i} (y_i - \bar{y})^2 = s^2 * (N - 1)$$

- EViews get covariance matrix:
 - ➤ After OLS estimation: view covariance matrix

	С	cigs	income
С	0.004298	-0.000121	-0.000100
cigs	-0.000121	3.28e-05	1.81e-06
income	-0.000100	1.81e-06	3.33e-06

- Use the entries on the main diagonal to get the estimated variances of the estimates
- Use the entries on the off-diagonal to get the estimated covariances of the estimates

3.4 Measuring Goodness of Fit in the MLRM (multiple linear regression model)

RSS: Residual Sum of Squares (= SSR)

TSS: Total Sum of Squares

 R^2 shows the variation in the dependent variable y about its mean that is *explained* by the expression model (i.e. explained by *all of* the explanatory variables)

$$R^{2} = 1 - \frac{\sum \hat{e_{i}}^{2}}{\sum (y_{i} - \bar{y})^{2}} = 1 - \frac{RSS}{TSS}$$

 R^2 also measures the degree of linear association b/w the values of y_i and the fitted values \hat{y}_i $R^2 = [\widehat{corr}(y, \overline{y})]^2$

Problem of R-square

 R^2 may too *larger* by including irrelevant x (in the extreme case, $R^2 = 1$ by including (N - 1) X variables)

- For Unrestricted and Restricted Model, it must be, $RSS_R \ge RSS_{UR}$ or $RSS_{UR} \le RSS_R$, so $R^2_{UR} \ge R^2_R$
- Solution of R-square
 - Use the *adjusted* R^2 symbolized as \bar{R}^2

$$\bar{R}^2 = 1 - \frac{\sum \hat{e_i}^2 / N - K - 1}{\sum (y_i - \bar{y})^2 / N - 1} = 1 - \frac{\hat{\sigma}^2}{\hat{\sigma}_y^2}$$

 \bar{R}^2 does not always rise with additional X's due to the 'degrees of freedom' correction (N-K-1)

$$\bar{R}^2 = 1 - \{(1 - R^2) \frac{(N-1)}{(N-K-1)} \}$$

- \bar{R}^2 can be *negative*, if N is sufficiently small and K sufficiently large (R^2 cannot be negative) $\bar{R}^2 < R^2$
- \bar{R}^2 no longer measures the percent of variation in the dependent variable explained by the model. How to interpretation?