LECTURE 1 INTRODUCTION

1.1 What is econometrics?

It's a bridge between economic theory and the real world. Use theory from economics, tools from statistics, and data. To test economic hypotheses, to forecast, to answer "how much" question

1.2 Overview of the Econometric Model

- Economic theory - the average or systematic behaviour, identifies relationship b/w economic variables, make predictions about the direction of outcomes. e.g., $q_{d}=f\left(p, p_{s}, p_{c}, y\right)$
- Econometrics - actual behaviours depend upon the sum of a systematic component (economic theory) and a random or unpredictable component ε. e.g., $q_{d}=f\left(p, p_{s}, p_{c}, y\right)+\varepsilon$
- Random error ε :
- reflects the intrinsic uncertainty in eco activity (unpredictable random behaviour)
- accounts for factors omitted from the model (any factors other than x that affect y)
- represents approximation error arising from the assumed linear functional form
- a systematic component of y is 'explained' by x;
- a random component of y is not explained by x, it's called random error ε
- Functional form (only consider linear equation in BE):

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{k} x_{k i}+\varepsilon
$$

$$
\circ \text { get a sample of data on }\left\{y_{i}, x_{i}\right\} \text { to learn unknown parameters }\left\{\beta_{0}, \beta_{1}, \ldots, \beta_{k}\right\}
$$

1.3 Types of Data

- time series: follow a country, region, firm or individual over time
- cross-sectional: collects information on several countries, regions, firms or individuals at a single point in time
- panel: follows several cross-sectional units over time

LECTURE 2 BASIC LINEAR MODEL: ASSUMPTIONS

2.1 The Linear Regression Model

$y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{k} x_{k i}+\varepsilon_{i}$

- the intercept β_{0} represents the average value of y when all the x 's are zero (meaningless if there is no x be zero from sample data)
- the slope parameter β_{j} represents the expected change in y associated with a unit change in x_{j}, all else constant

$$
\beta_{j}=\left.\frac{E[y \mid \mathbf{X}]}{\Delta X_{j}}\right|_{\text {all other } X \text { 's constant }} \quad \text { for } j=1,2, \ldots K
$$

Interpretation: holding all else constant, y changes by _ unit on average when change x_{1} by 1 unit

2.2 Assumptions about the Linear Regression Model

MR1: The correct model is:

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{k} x_{k i}+\varepsilon_{i}
$$

- Omitted relevant variables: biased OLS estimators if omitted Z is correlated with original X_{1}
- Inclusion irrelevant variables: unbiased OLS estimators but larger variance of estimators (not BLUE)
$\operatorname{MR2}$: $E\left[\varepsilon_{i} \mid x_{i}\right]=0 \Rightarrow>$ the only assumption to ensure unbiasedness
- the error term has an expected value of 0 , given any value of the x 's
- the x 's does not change the expected value of the random error ε
- but doesn't mean zero sample average of the error $E[\varepsilon] \neq 0$

MR3: $\operatorname{Var}\left[\varepsilon_{i} \mid x_{i}\right]=\sigma^{2}$ Homoskedasticity $=>$ ensure consistency

- The variance of the random errors is constant and independent of the x 's.
- Heteroskedasticity: unbiased, but no longer BLUE (wrong $\operatorname{se}\left(b_{j}\right)$ and wrong t-test)

MR4: any pair of random errors are uncorrelated
$\operatorname{Cov}\left(\varepsilon_{i}, \varepsilon_{j} \mid x_{i}, x_{j}\right)=0 \quad$ for all $i, j=1,2, \ldots N, i \neq j$

- Autocorrelation: unbiased, but no longer BLUE

MR5a: x are not-random, x values are "fixed in repeated sampling

- the values of all x 's are known prior to observing the (realized) values of dependent variable.

MR5b: Non-collinearity

- any one of the x 's is not an exact linear function of any of the other x 's.
- none of the x is redundant
- Exact Collinearity: unbiased, but no longer BLUE, the least squares procedure will fail

2.3 The Least Squares Principle

- the Least Squares Principle estimates $\left\{\beta_{0}, \beta_{1}, \ldots, \beta_{k}\right\}$ such that the squared difference between the fitted line and the observed value of y is minimized.
a) Estimators $\left\{b_{0}, b_{1}, \ldots, b_{k}\right\}$
b) Fitter line: $\widehat{y}_{l}=b_{0}+b_{1} x_{1 i}+b_{2} x_{2 i}+\cdots+b_{k} x_{k i}$
c) Least squares residuals: $\widehat{e_{l}}=\left(y_{i}-\widehat{y_{l}}\right)=y_{i}-\left(b_{0}+b_{1} x_{1 i}+b_{2} x_{2 i}+\cdots+b_{k} x_{k i}\right)$
$>$ Why min the squared diff $\sum \widehat{\mathrm{e}}_{1}^{2}$ not $\sum \widehat{\mathrm{e}}_{1}$ - the minimum value would be at $-\infty$ so the fitted line could be set arbitrarily "high"
$>$ Why not set the fitted line $\sum \widehat{e}_{l}=0-$ a large positive value of $\widehat{e}_{l}>0$ would cancel out a large negative value $\widehat{e}_{l}<0$. In addition any fitted line passing through the (sample) means of y an x would satisfy this criteria (infinite number of potential fitted line)
- Minimise the sum of squared errors: $S=\sum \widehat{\mathrm{e}}_{1}^{2}$
$\min _{\left\{\beta_{0}, \beta_{1}, \ldots, \beta_{k}\right\}} S=\sum_{i=1}^{N}\left[y_{i}-\left(b_{0}+b_{1} x_{1 i}+b_{2} x_{2 i}+\cdots+b_{k} x_{k i}\right)\right]^{2}$
first order conditions, for β_{0} :
$\frac{\partial S}{\partial \beta_{0}}=-2 \sum_{i=1}^{N}\left[y_{i}-\left(b_{0}+b_{1} x_{1 i}+b_{2} x_{2 i}+\cdots+b_{k} x_{k i}\right)\right]=0$
for $\beta_{j}, \mathrm{j}=1,2 \ldots \mathrm{k}$
$\frac{\partial S}{\partial \beta_{j}}=-2 \sum_{i=1}^{N}\left[y_{i}-\left(b_{0}+b_{1} x_{1 i}+b_{2} x_{2 i}+\cdots+b_{k} x_{k i}\right)\right] x_{j i}=0$

2.4 Properties of the OLS Residuals

OLS (Ordinary Least Squares)

- Estimators $\left\{b_{0}, b_{1}, \ldots, b_{k}\right\}$
- Random variables $\left\{b_{0}, b_{1}, \ldots, b_{k}\right\}$: values depend on the sample data y and x
- Least squares estimates: when the sample data are substituted into the formulas we obtain numbers that are the observed values of random variables
P1: when there is an intercept term $\beta_{0}, \sum \widehat{e_{l}}=0$
P2: for each $\beta_{j}, \mathrm{j}=1,2 \ldots \mathrm{k}$

$$
\sum \widehat{e}_{l} x_{1 i}=0 \text { and } \sum \widehat{e}_{l} x_{2 i}=0 \text { and } \ldots \sum \widehat{e}_{l} x_{k i}=0
$$

P3: these two properties imply:

$$
\begin{aligned}
\sum \widehat{e}_{l} \widehat{y}_{l} & =\sum \widehat{e}_{l}\left[b_{0}+b_{1} x_{1 i}+b_{2} x_{2 i}+\cdots+b_{k} x_{k i}\right] \\
& =b_{0} \sum \widehat{e}_{l}+b_{1} \sum \widehat{e}_{l} x_{1 i}+\cdots b_{k} \sum \widehat{e}_{l} x_{k i}=0
\end{aligned}
$$

LECTURE 3 BASIC LINEAR MODEL: STATISTICAL PROPERTIES

3.1 The Sampling Properties of the OLS Estimators

- The means and variances of the estimators $\left\{b_{0}, b_{1}, \ldots, b_{k}\right\}$ provide location and dispersion of the probability distribution of $\left\{b_{0}, b_{1}, \ldots, b_{k}\right\}$.
- OLS Estimator is an Unbiased Estimator
$E\left(b_{j}\right)=\beta_{j}$ for $\mathrm{j}=1,2, \ldots \mathrm{k}$ $E\left(b_{0}\right)=\beta_{0}$
- Assumption $E\left(\varepsilon_{i} \mid x_{i}\right)=0$ for all i (conditional expectation: the average of ε_{i} over all outcomes in x_{i})
- When the expected value of any estimator of a population parameter is equal to the true value of that population parameter, the estimator is said to be unbiased
- Intuition: if say 10,000 sample of size N were collected and b_{j} were calculated for each of these 10,000 samples, the average value of these estimates would be equal to β_{j}
- Unbiasedness does not mean a specific estimate of b_{j} is "close" to the true population parameter β_{j}, we never know how close they are, it depends on variance.
- We say an estimator is unbiased not an estimate
- Variability of the OLS estimators:
- the lower the variance of an estimator, the greater the sampling precision of the estimator
- if any of these OLS assumptions don't hold, the expressions for $\operatorname{Var}\left(b_{1}\right), \operatorname{Var}\left(b_{2}\right) \ldots \operatorname{Var}\left(b_{k}\right), \operatorname{Cov}\left(b_{j}, b_{k}\right)$ will be wrong. Not the Min $\operatorname{Var}\left(b_{j}\right)$

\circ	MR2: $E\left(\varepsilon_{i} \mid x_{i}\right)=0$
\circ	MR3: $\operatorname{Var}\left(\varepsilon_{i} \mid x_{i}\right)=\sigma^{2}$
\circ	MR4: $\operatorname{Cov}\left(\varepsilon_{i}, \varepsilon_{j} \mid x_{i}, x_{j}\right)=0$
\circ	MR5a: The X's are not-random

- Factors affect $\operatorname{Var}\left(b_{j}\right)$ for $\mathrm{j}=1,2, \ldots \mathrm{~K}$ $\operatorname{Var}\left(b_{j}\right)=\frac{\sigma^{2}}{\sum\left(X_{j i}-\bar{X} j\right)^{2}}$
- $\uparrow \sigma^{2} \uparrow \operatorname{Var}\left(b_{j}\right)$)> randomness

- $\uparrow \sum\left(X_{j i}-\bar{X} j\right)^{2} \downarrow \operatorname{Var}\left(b_{j}\right) \Rightarrow$ dispersion in the values of X
- \uparrow sample size $\downarrow \operatorname{Var}\left(b_{j}\right)$)> normality, greater job in closing to the sample mean
- $\uparrow \operatorname{corr}\left(X_{j}, X_{i}\right) \uparrow \operatorname{Var}\left(b_{j}\right)$ for $i \neq j \Rightarrow$ collinearity, higher difficulty disentangling separate effects
- OLS estimator is a Linear Estimator (weighted sum of y's)
$b_{2}=\frac{\sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i=1}^{N} y_{i}\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}=\sum w_{i} y_{i}$
$\sum_{i=1}^{N} \bar{y}\left(x_{i}-\bar{x}\right)=\bar{y} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)=\bar{y}(0)=0$ $w_{i}=\frac{\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}$

3.2 The Gauss-Markov Theorem

- Under the assumptions of the linear regression model (MR1-MR5), the OLS estimators $\left\{b_{0}, b_{1}, \ldots, b_{k}\right\}$ have the of Best Linear Unbiased Estimators (BLUE) $\left\{\beta_{0}, \beta_{1}, \ldots, \beta_{k}\right\}$
- smallest variance of all linear and unbiased estimators
- We can't say it as the best estimator of all possible estimators, but in this course, we don't consider non-linear estimators, just remember these two factors
- The Gauss-Markov theorem does not depend on the assumption of normality
- The Gauss-Markov theorem applies to OLS estimators - not an OLS estimate from a single sample
- BLUE is not one of MLMR assumptions, Gauss-Markov sets the BLUE conclusion if all assumptions held.

3.3 Estimator of the Error Variance

$\widehat{e_{l}}=y_{i}-\hat{y}_{i}=y_{i}-\left\{b_{0}+b_{1} x_{1 i}+\cdots b_{k} x_{k i}\right\}$
Use the unbiased estimator of the error variance:
$\hat{\sigma}^{2}=\frac{\sum \widehat{e}_{L}^{2}}{(N-K-1)}$ or $\frac{\sum \widehat{e}_{L}^{2}}{(N-K)}$
Both are correct: sample size takes away the number of coefficients including intercepts.
where $k+1$ is the number of parameters being estiamted. The simple regression model $k+1=2$

- EViews get $\hat{\sigma}^{2}$:
- S. E of regression = standard error of regression gives $\hat{\sigma}$
- \quad Sum Squared resid $=$ SSR sum of squared residence gives $\sum \widehat{\mathrm{e}}_{1}^{2}$

$$
R S S=\sum\left(y_{i}-\hat{y}\right)^{2}=\sum \widehat{e}_{l}^{2}=\hat{\sigma}^{2} *(N-K-1)
$$

- S. D dependent var $=$ standard deviation of dependent variable s or $\hat{\sigma}_{y}$

$$
T S S=\sum\left(y_{i}-\bar{y}\right)^{2}=s^{2} *(N-1)
$$

- EViews get covariance matrix:
- After OLS estimation: view - covariance matrix

	c	cigs	income
c	0.004298	-0.000121	-0.000100
cigs	-0.000121	$3.28 \mathrm{e}-05$	$1.81 \mathrm{e}-06$
income	-0.000100	$1.81 \mathrm{e}-06$	$3.33 \mathrm{e}-06$

\operatorname{COV}\left[b_{2}, b_{1}\right] \& \operatorname{VAR}\left[b_{2}\right] \& \operatorname{COV}\left[b_{2}, b_{3}\right]

\operatorname{COV}\left[b_{3}, b_{1}\right] \& \operatorname{COV}\left[b_{3}, b_{2}\right] \& \operatorname{VAR}\left[b_{3}\right]\end{array}\right]\)

- Use the entries on the main diagonal to get the estimated variances of the estimates
- Use the entries on the off-diagonal to get the estimated covariances of the estimates
3.4 Measuring Goodness of Fit in the MLRM (multiple linear regression model)
- RSS: Residual Sum of Squares (= SSR)

TSS: Total Sum of Squares
R^{2} shows the variation in the dependent variable y about its mean that is explained by the expression model (i.e. explained by all of the explanatory variables)
$R^{2}=1-\frac{\sum \widehat{e}_{l}^{2}}{\sum\left(y_{i}-\bar{y}\right)^{2}}=1-\frac{R S S}{T S S}$
R^{2} also measures the degree of linear association b / w the values of y_{i} and the fitted values \hat{y}_{i}
$R^{2}=[\widehat{\operatorname{corr}}(y, \bar{y})]^{2}$

- Problem of \mathbf{R}-square
R^{2} may too larger by including irrelevant x (in the extreme case, $R^{2}=1$ by including $(N-1) X$ variables)
- For Unrestricted and Restricted Model, it must be, $R S S_{R} \geq R S S_{U R}$ or $R S S_{U R} \leq R S S_{R}$, so $R^{2}{ }_{U R} \geq R^{2}{ }_{R}$
- Solution of R-square
- Use the adjusted R^{2} symbolized as \bar{R}^{2}

$$
\bar{R}^{2}=1-\frac{\sum \widehat{e}_{l}^{2} / N-K-1}{\sum\left(y_{i}-\bar{y}\right)^{2} / N-1}=1-\frac{\hat{\sigma}^{2}}{\hat{\sigma}_{y}^{2}}
$$

- $\quad \bar{R}^{2}$ does not always rise with additional X 's due to the 'degrees of freedom' correction $(N-K-1)$

$$
\bar{R}^{2}=1-\left\{\left(1-R^{2}\right) \frac{(N-1)}{(N-K-1)}\right\}
$$

- $\quad \bar{R}^{2}$ can be negative, if N is sufficiently small and K sufficiently large (R^{2} cannot be negative)
$\bar{R}^{2}<R^{2}$
- $\quad \bar{R}^{2}$ no longer measures the percent of variation in the dependent variable explained by the model. How to interpretation?

