BMS2011- Developmental Biology and Anatomy

Animal Diversity I

- 1. What makes an animal?
- 2. Body plans
- 3. Animal phylogeny: protostomes, deuterostomes, vertebrates
- 4. Simple animal body plans: porifera (sponges)
- 5. Cnidarians (jellyfish, corals, anemones)
- 6. Worms
- 7. Ecdysozoa

ONE

Definition:

- Nutritional mode
 - o Heterotrophs: Animals
 - Ingest
 - *Fungi absorb
 - Enzyme breakdowns food
 - Autotrophs: Plants
 - Cannot generate organic molecules for energy
 - Energy obtained from environment
- Cell structure and specialisations
 - o Animals:
 - Eukaryotes
 - Multi-cellular
 - Lack a cell wall: have matrix proteins (collagen) instead

TWO

Body Plans:

- *A body plan is not a plan but a map to describe how an animal functions as an integral whole
- ** Function: defined by where the characteristic sit on the evolutionary spectrum
 - Organisation
 - Tissues
 - o Specialised
 - Membranous compartments
 - Gastrulation
 - o Germ layers:
 - Diploblastic
 - Triploblastic

Body Cavity:

- Coelom:
 - Fluid filled compartment
 - Has gastroventricular cavity
 - Cushions/space for other organs
 - Store/circulate metabolites
 - o Larger animal without extra cells
 - $\circ \quad \text{Hydroskeleton} \\$
- Acoelomates (flatworms: Platyhelminthes)
 - o No space between the digestive tract and ectoderm

- Pseudocoelomates (round worms: Nematoda)
 - Line by tissue from both mesoderm and endoderm
- Coelomates (segmented worms: Annelids)
 - Completely lined by tissue from the mesoderm

THREE

Animal Phylogeny:

- Protostomes and deuterostomes comprise the Bilateria phylogeny. Deuterostomes are comprised of the Chordata and Echinodermata. Protostomes are all other phylogenies.
 - Protostomes: have cells that are pre-programmed.
 - o Lophotrochozoa
 - o Ecdysozoa
 - O Development:
 - 1. Cleavage: spiral and determinate
 - 2. Schizocoel: mesoderm mass splits to form coelom.
 - 3. Secondary anus formation
 - Deuterostomes: have cells that can specialise to have any function.
 - o **Deuterostomia**
- Based on:
 - Shared characteristics
 - Ancestry and relationships
 - Developmental and molecular characteristics

FOUR

Porifera:

- Basal animals without specialised tissue
- Simple which restricts size
- Fast diffusion due to small size and one layer of cells
- Molecular exchange: gases/waste/nutrients
- Self-aggregating
- No germ layers/organs
- No circulatory/pulmonary/digestion/excretion system.

FIVE

Eumetazoa

- Have specialised tissues

Cnidaria:

- Radially symmetrical
 - o Oral/aboral
- Hydrostatic skeleton
- Gastro ventricular cavity with digestion via movement of muscles against skeleton
- Epidermis (ectoderm)
- Gastrodermis (endoderm)
- Nerve network
- Epithelialmuscles layers:
 - o Epidermis- longitudinal
 - o Gastrodermis- circular
- Blastopore (opening at the bottom of the cell aggregate)
- Medusa: free floating and mobile therefore can catch larger prey
- Polyp: sessile (fixed location)
- Carnivorous: tentacles around the mouth
- Cnidocytes have defence and prey capture:
 - o Hair trigger
 - Sting threads
 - Toxins

<u>Bilateria</u>

- Largest group
- Bilateral symmetrical
 - o Dorsal/ventral
 - Lateral/medial
- Triproblasts

Platyhelminthes:

- Parasitic
 - o Monogeneans
 - Trematodes (flatworms)
 - Cestodes (tapeworms)
- Marine/damp terrestrial/freshwater/planarians (ponds/streams)
- Ectoderm
 - o Epidermis
- Endoderm
 - o Blind gut
 - Has a mouth but no anus
- No respiratory/circulatory system or skeleton
- Flatness
 - o Diffusion
 - Restricts size and capability
 - Limited weight as movement would be restricted
- Can regenerate due to their simplicity
- Anatomy:
 - o Cilia on ventral side and muscles for locomotion
 - Limited cephalisation for eyes
 - Front ganglia (nerve cell cluster)
 - Nerve cord
- Tapeworms: absorption i.e. have no gut at all

Annelids:

- Repeated segmented which allows for self
- Soil/marine/moist forest/freshwater
- Cephilisation: nerve ring (ring of nerves and ganglia circling pharynx) and cerebral ganglia
- Closed circulatory system
- Locomotion: peristalsis
 - o Muscles act on hydroskeleton
 - o Circular muscles lengthen
 - o Longitudinal muscles shorten
 - Anchored by setae
- Complex digestive system:
 - o Pharynx
 - Oesophagus
 - o Crop
 - Intestine

mucus

ectoderm

artery

typhlosole

gut

longitudinal muscle

circular muscle

SEVEN

Ecdysozoa

Nematoda:

- Soil/fresh water/inside plants and animals
- Cuticle:
 - Tough/flexible/non-living
 - Limits size (most are small) and therefore required moulting
 - Excretes coelomic fluid when under pressure
 - Only have longitudinal muscles therefore move by undulations
 - 1. Muscle blocks contract on one side.
 - 2. Counterbalanced by hydrostatic pressure & cuticle.
 - 3. Push against the substrate to be effective.
- No circulatory/respiratory/excretory system
- Digestive system: one way (muscular pharynx)
- Nervous system: has been mapped with 302 nerves
- In every form of life: some may cause disease
 - Lymphatic filariasis
- Examples:
 - o Potato cyst nematode
 - Pratylenchus in roots
 - o Caenorhabditis in soil
 - Ascaris in gut
 - o Trichinella in muscle

Anthropoda:

- Coelomates: limited
- Most species/diverse/limited
- Segmented with appendiges
- Cuticle made from chitin
 - Exoskeleton advantages:
 - Protection
 - Reduce evaporation

- Support for muscles
- Exoskeleton disadvantage:
 - Costly to make
 - Vulnerable during moulting
 - Limits size
- Examples:
 - Chelicerates (spiders/lice/scorpions) 0
 - Myriapods (centipedes/millipedes)
 - Custaceans (crabs)
 - Insects (largest group)

Animal Diversity II

Echinoderms:

- Marine (diverse)
- Secondary radially symmetrical
- Sessile (slow moving)
- Hydraulics (moving tube feet)
 - Food capture
 - Waste transport 0
 - Locomotion
 - Alternate muscle contraction, forcing water into the tube feet, causing them to extend (stretch) and push against the ground, then relaxing to allow the feet to retract.
 - Respiration

Figure 8. The developmental stages of Starfish (Echinoderm)

- Zygote
- 4-cells
- 3. 8-cells
- 4. Morula

- 5. Blastula
- 6. Gastrula 7. Ciliated Gastrula 8. Larva

TWO

<u>Chordata</u>

- Includes:
 - Cephalochordates
 - Small suspension feeders
 - Retain basic chordate characteristics
 - Urochordates (sea-squirts)
 - The body is enclosed in a translucent tunic consisting of living connective tissue a gelatinous hydrated fibre mesh which is infiltrated by blood cells and amoebocytes (mobile cell via pseudopodia which are temporary projections from the eukaryotic membrane).
 - Mesh often contains a type of cellulose (tunicin) fibres (rare in animals).
 - Highly modified
 - Sessile
 - o Craniates
- Characteristics:
 - Notochord (vertebrae)
 - Post-anal tail
 - Dorsal hollow nerve chord (spinal cord)
 - Pharyngeal slits (feeding and breathing)
 - o Shared:
 - Cranium and brain
 - Eyes and other sensory organs
 - Neural crest

Vertebrae

- Craniate with a backbone
- Paired appendages
- Endoskeleton
 - o Light
 - Supports bodyweight
 - o Can grow
- Petromyzontida (Lampreys):
 - Oldest vertebrate
 - No paired appendages/jaw/bone skeleton
 - o Larvae
 - Notochord
 - Filter feeders similar to lancelets
 - Cartilage in adults
- Gnathostomes:
 - o Jawed vertebrae
 - Pharyngeal slits → jaw bone
 - o Chondrichthyes:
 - Cartilaginous fish
 - Ca may be present
- Osteichtyans:
 - Actinopterygii (ray finned fish)
 - Fins supported by dermal rays
 - No muscles in fins
 - Dominant: 27,000 species
 - Habitats:
 - Marine
 - Freshwater
- Sarcopterygii (lobe fins):
 - Rod-shaped bones/muscles
 - Coelacanths/lungfish
- Tetrapods:
 - Evolution of podia:
 - 1. Humorous and digits
 - 2. Radius and ulna
 - 3. Decrease of digit size
 - o Evolution:
 - 1. Neck
 - 2. Stronger vertebral column
 - 3. Ribs
 - 4. Supporting girdles
 - Amphibia:
 - External fertilization (eggs in water)
 - Aquatic larvae: gills and finned tail
 - Adults (metamorphism):
 - Legs
 - Lungs
 - Terrestrial, moist habitats
- Amniotes:

- Amniotic egg
 - Differs from the jelly egg as it has a shell
 - Bigger
 - Can produce more developed offspring due to large food reserves
 - Amnion protection
 - Allows more successful phylogeny
- Keratinised skin:
 - Fibrous
 - Thick
 - Water proof
- Reptilia:
 - Birds:
 - Highly modified reptiles
 - Derived from theropod dinosaurs
 - Toothless beak
 - Wings/feathers
 - Modified sternum
 - Most abundant tetrapod
 - High metabolism
- o Mammalia:
 - Mammary glands
 - Hair
 - High metabolism
 - Larger brains (relative to size)
 - Three groups:
 - 1. Monotremes (egg-laying mammals)
 - a. Milk from skin (no nipples)
 - b. Only in Australia/New Guinea
 - 2. Marsupials (pouched mammals)
 - a. In Australia and Americas
 - b. Simple placenta
 - c. Short gestation lactation in pouch
 - 3. Eutheria (placental mammals)
 - a. Worldwide
 - b. Complex placenta
 - c. Long gestation period

