These notes are extremely comprehensive and cover the entire semester of lectures.

A lot of notes I've seen contain a lot of full sentences; I learn best when the clutter is removed, therefore in these notes, I've summarised most information as tables, bullet points & pictures, I've also removed the unnecessary 'filler' words – hopefully this makes studying easier for you!

These notes contain:

- Information taken from lectures sides & Tapsell the textbook
- Personal comments & tips to ace the exam
- **Self-made diagrams:** I'm a visual learner, that's why there are quite a few diagrams throughout the notes (this is also why titles are different colours)

In this course I achieved a 7 (out of 7) with these notes

Anything I have marked like **Title or question** (i.e. <u>purple</u> or with <u>asterisks</u>) means this information was essential for the final exam (note that exams are different every year)

Macronutrients - Protein

Protein Functions:

- Forms antibodies
- Maintains normal blood osmotic pressure
- Produces Hemoglobin, enzymes and many hormones

Polypeptide examples: insulin & haemoglobin

Prevalence of malnutrition in hospitals = 40%

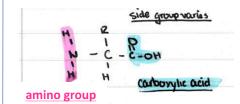
Protein digestion:

- 1.Mouth
- 2.Stomach HCl, pepsinogen to pepsin
- 3.Small intestine hydrolysis reactions, peptidase enzymes

Protein requirements: 0.75g/kg/day (RDI= 64g men, 46g women)

Essential Amino Acids:

- 1.Histidine
- 2.Isoleucine
- 3.Leucine (triggers protein synthesis)
- 4.Lysine
- 5.Methionine
- 6.Phenylalanine
- 7.Threonine
- 8. Tryptophan
- 9.Valine


A way to remember the list of essential amino acids:

Harry and Ike liked leaving messes.

Phil and Tom tried vacations

Amino Acid Structure:

** Protein contains nitrogen, carbs and fats don't**

There are 2 ways our bodies can synthesise non-essential amino acids

	1. Dearnination NH3 (ammonia) * given a source of NH3, the		
	aminu acid -> Keto acid body can make non-essential amino		
There are I ways we can synthesise	Kelo acid > amino acid acids from Keto acids *		
a non-essential amino acid.	NH3		
2. Transamination			
Koto una A + amno and B -> amino and A + Koto and B			
* transfer a	n amono group (NHz) from an amono aid to a luto acid		
	this requires vitamin B as a rocreyme.		

Amount of energy in 1g of macronutrients:

1g protein -> 17kJ

1g carb -> 16kJ

1g fat-> 27kJ

Amount of protein in these:

250ml milk - 9g

2 eggs - 12g

2 slices white bread - 6g

200g steak - 45g

Four main proteins in the body:

Collagen, haemoglobin, myosin, actin

Macronutrients - Carbohydrates

Monosaccharides: glucose, galactose, fructose (only diff. is position of hydroxyl)

Disaccharides: sucrose, lactose, maltose

Oligosaccharides: malto-oligosaccharides

Polysaccharides: starch, glycogen

Lactose = glucose + galactose

Sucrose = glucose + fructose

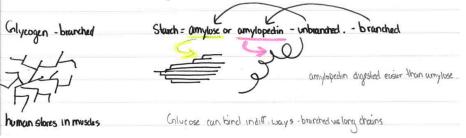
Maltose = glucose + glucose

Carbohydrate/ Starch Digestion:

- 1. Amylase in mouth (partly) breaks down long-chain polysaccharides into monomers
- 2. Digestion in stomach is minimal
- 3. Most digestion occurs in small intestine
 - Pancreatic enzymes break polysaccharides into monomers (e.g. amylase, lactase)
 - Villi absorb monosaccharides in small intestine
- 4. Liver then converts fructose & galactose into glucose

Know amount of carbohydrates in these foods:

Can of coke	White bread slice	Glass of milk	Banana
50g	15g	13g	20g


Polysaccharides: starch & glycogen

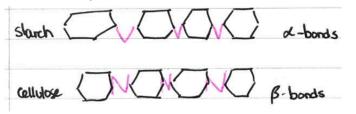
Glycogen is branched - stored in muscles

Carbs are stored in body as:
Triglycerides & glycogen

Starch has 2 forms:

- Amylose = unbranched
- •Amylopectin = branched

3 classes of Fibre (indigestible polysaccharides)


- 1. Soluble fibres
- 2. Insoluble fibres
- 3. Resistant starches

Starch vs Cellulose (both made of glucose)

Starch: alpha bonds (can digest)

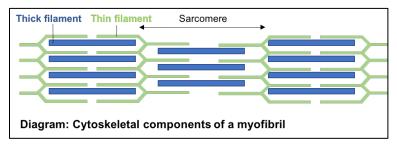
Cellulose: beta bonds (can't digest because our enzymes can't get around

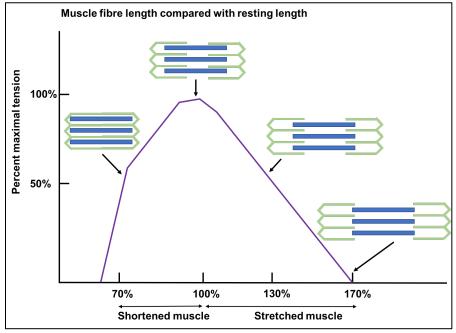
beta bonds)

Blood Glucose Homeostasis: Insulin & Glucagon

Glucagon: releases glucose into the blood stream

Insulin: promotes glucose uptake by liver


Strength, Muscular Endurance and Flexibility

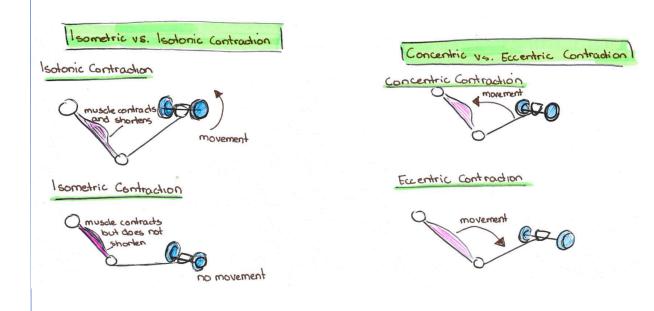

Muscle Anatomy

- Muscle fibre = a single muscle cell
- · Within a muscle fibre are myofibrils which contain
 - Thick filament = myosin
 - Thin filaments actin

There make up the sarcomere which when it contracts, produces force

- Contractile/ force generating capacity of the muscle
 - When muscle is at is resting length, it can produce most amount of force

Resistance Training Jargon


Strength = max. force that a muscle a generate in specific conditions
 Power = rate of doing work (product of strength and speed)
 Muscular Endurance = ability of muscle to sustain near maximal force (reps)

Repetition (rep) = one movement of an exercise

Set = group of reps performed continuously

Repetition Maximum (RM) = max weight that can be lifted for a specific no. repetitions

Isotonic muscle action - movement of a body part
Isometric muscle action - muscle exerting force without movement
Concentric muscle action - muscle exerts force while shortening
Eccentric muscle action - muscle exerts force while lengthening

