LECTURE 1: INTRODUCTION

- There's enough food to feed the global population: distribution + access issues
- Food production has increased faster than growth in population in recent history
- 1/9 (11%) of worlds pop. are chronically undernourished
 - 0 Most in developing countries
- 34 countries face food shortages (27 in Africa)

South Sudan

- Famine declared Monday 20th February 2017
 - ½ countries pop won't have access to affordable food in

Extent:

Worldwide: 795 million

Developing: 780 million

Developed: 15 million

- Large scale migration to Uganda seeking refuge
- Pop: 12 million, civil war since 2013, gained independence in 2011
- Rich in resources, esp oil
- Previous famine in 1998

UNDERNOURISHMENT

Insufficient calories and proteins to live a healthy life

A person who doesn't get enough food, or enough of the right kinds of food, to sustain good health + work

- Prevalence in Africa, some of Asia + parts of the Middle East, Central + South America
- Significant improvement in past 20 years motivation of Millennium Development Goals (MDG) using a 1992 baseline
- Every region has reduced % proportion of population undernourished: yet total number of undernourished increased due to population growth
 - Least progress in sub-Saharan Africa
- Undernourishment increases vulnerability to famine + reduces resistance to disease

Types of Undernutrition

- Undernutrition: insufficient calories and/or protein
- Dietary deficiencies: lack of micronutrients
- Secondary Undernutrition: poor health impedes nutrient uptake + diarrhoea

FAMINE

An excess in mortality caused by starvation

An extreme scarcity of food

UN Definition (based on 3 conditions)

- 20% of population must have fewer than 2,100 kilocalories of food available a
- 30% of children must be acutely malnourished
- 2 deaths per day in every 10,000 people (or 4 per day in 10,000 children) must be caused by lack of food
- Common features: exceptional event, increases in mortality, severe social disruption (institutional + demographic changes)

Consensus on definition of Famine

- Previously, debate on definition of famine + when to declare state of
- Important: to design solutions + prevent in the future, + have effective international response
- Sudan 1998: lack of agreement on definition caused delay in declaring famine = deaths

Operationalising Famine

- Triangulation of a range of indicators:
 - Anthropometric (age, sex, weight, height)
 - Mortality 0
 - 0 Livelihood
- **Thresholds**
 - Crude mortality rates (2/10,000/day) 0
 - Acute undernutrition (>30% population) 0
 - Actual v minimum food consumption gap (>20%)

Explaining Famine

- Relative Abundance Argument (Availability)
 - a. Too many people, not enough food
 - i. Agricultural production cant keep up with population growth in certain areas
 - ii. Environmental degradation + environmental change undermine food production
- **Distribution Argument (Access)**
 - a. Issues: who produces food, what sort of food is produced + who gets the food
 - b. Issues apply at global, regional, national + local scales
- **Multicausal Argument**
 - a. No single cause factor, result of short + long term factors + complex feedback effects
 - Due to failure to respond + lack of accountability
- **Place Matters**
 - a. Geography of famines + food security each famine is different due to place
 - b. Solutions depend on theories + circumstances of each case

LECTURE 6: ENVIRONMENTAL DEGRADATION + TECHNOLOGICAL INNOVATION

Famine as a Process: Instead of just an event, and climate as part of this process

- Technological innovation: around 8,000 years ago (transition to agriculture): plough/hoe invented
 - Allowed for correct planting of seeds

Finland, 1969-1971

- Shows the impact of climate on famine
- Colder than normal period, during the Little Ice Age (Maunder Minimum)
- Resulted in 1/3 of the population dying in a 2-3 year period
- Finland: has a marginal climate for productivity
- Chain of events: series of crop failures due to crops, less crops, next year's cops eaten, less yield for next year, stock killed for food, less productivity cumulative effect, amplified by actions
- *Climate only part of the problem
- Government Response: lack of assistance, didn't give loans as thought starving people would die + not re-pay loans
 - o Gave grains at end of growing season too little too late

SOILS

 Understanding soil processes allows us to locate productive areas + understand likely consequence of converting a certain area to cropland

Plants + Soils

- Strong relation between soil + food production
- Plants need: air, water, warmth, light + nutrient (all climate related, nutrients soil related as well)
 - o Nutrients: potassium, nitrogen + phosphorous

Nature of Soil

- Consists of: matter in all states (liquids, solid + gases), organic + mineral matter and water + air
- Feedback effects lead to soil degradation we must overcome these to maintain productivity
 - o Famine risks where degradation is not kept in check

Controls on Soil

Control	Explanation
Relief/Slope	 Steep slope = thin soils, due to fast speed of substrate movement Less steep slope, lowlands = thick soils, material in situ, better productivity Cantena: idea that different soils on varying slopes have varying depths due to slope variations of water, climate + vegetation Further down slope = increased productivity
Organisms	 Plants: biological weathering, roots + gas exchange, infiltration + evapo-transpiration Macro-organisms: bioturbation (move material around) – redistribute chemicals, water + gases Micro-organisms: decomposition
Bacteria	 Nitrogen-fixing Bacteria: decompose dead organic material, leaving behind more soil nitrogen Nitrifying Bacteria: change ammonia to nitrate, preferred form of nitrogen for some plants Denitrifying Bacteria: take out productivity, anaerobic soils
Vegetation (Humus) *important for holding nutrients	 Dead plant matter adds organic material to soil Humus, colloids + compost: terms for decayed plant or animal matter Results in dynamic equilibrium of production (used in wet warm areas) + destruction (used in biological productivity) Soil particles become negatively charged + attracted positively charged ions (Ca, Ma, K, Na)

Soil Forming Processes

- Enrichment: material added by aeolian (wind) or fluvial (water) deposition
- Removal: leaching, solution + relocation of minerals
- <u>Translocation:</u> Eluviation (downward) + Illuviation (upward) movement of fine material
- <u>Transformation:</u> decomposition of organics to humus

Rainfall + Soils

Infiltration Excess Overland Flow	Throughflow	Surface Energy
 Ground has ability to infiltrate water at surface, excess flowers over land Controlled by permeability of soil Infrequent: need high rates of rainfall to exceed infiltration rate of natural soils 	 Water moves through the ground Solute pathway: water has energy potential, will flow depending on depth of bedrock, permeability, macropores + surface vegetation Flow through ground slower than overland flow 	 Overland flow begins as sheet flow, becomes channelized, forms gullies then small river channels More connected the flow, the greater its energy: faster velocity, lower influence of channel boundary friction + greater discharge

AGRICULTURAL TRANSFORMATIONS

- Nomadic
- Sedentary Pastoralism (clearing, less diversity of plants + ploughing)
- 15th C: Translocation of Food (global movement of crops)
- Industrial Revolution (18th 19th C) mechanisation
- Green Revolution

RUSLE (Universal Soil Loss Equation)

 Created to represent the potential long term average annual soil loss based on a formula

US 1930's Dust Bowl

- Agricultural expansion on N. American plains
- Poor care for soil led to massive degradation + erosion, which amplified the drought conditions
- Loss of productive topsoil = long-term effects for food security + economic development
- Famine? No, people could migrate

Pastoralism: Clearing the Ground

Effects/Impacts

- Immediate: remove interception of rain + evapotranspiration = increase of rain hitting the ground
- Long-Term: reduce humus input, reduce nutrient input, leach nutrients, reduce soil cohesion by removing roots

Morphological Effects

- Surface sealing = increased overland flow
- Rilling + gullying = increased energy available for erosion (concentrates flow)
- Magnitude of these effects determined by:
 - o Precipitation
 - o Infiltration capacity
 - Slope angle + slope length
 - Surface cover

Time