-Vertebral column

Consists of the axial skeleton, vertebrae, intervertebral joints and disc, vertebral canal and foramen.

> Foetal curvature

- o **Primary:** Foetus has a 'C' shaped
- o **Secondary:** Lordotic curves develop in cervical and lumbar regions after a few months.
- Abnormalities: Occurs when the spine is not in typical form.
 - Abnormal lordosis: Sway back, lumbar region bends more dramatically.
 - **Kyphosis:** Hunch back, thoracic region bends more dramatically.
 - Scoliosis: Vertebral column not straight.
- Vertebrae structure: Vertebrae are regionally distinct.
 - Vertebral body: Weight bearing, articular cartilage above and below.
 - Vertebral arch: Form vertebral foramen protects spinal cord
 - Spinous and transverse processes: Levers for muscle attachment.
 - Articular process: 4 2 above and below.
 For facet joints.
 - Intervertebral foramen: Created by the hole formed from upper and lower vertebral notches.

Transverse process

> Vertebral joints

- Intervertebral joints/discs: Secondary cartilaginous joints.
 - Anulus fibrosis:
 - Attaches to the epiphyseal ring above and below.
 - Consists of concentric lamellae and functions to keep vertebrae together.
 - Concentric fibrous rings orientated at right angles enables multi-directional movement (resists excessive movement)

Nucleus pulpous:

- Encapsulated within the anulus fibrosis, very water-rich and functions to keep vertebrae together.
- Deformable but not compressible shock absorber.
- Zygapophyseal (facet) joints: Plane synovial joints.
 - Articular processes: Plane synovial joints permit gliding along only one axis.
 - Movement determined by shape and depth of articular surfaces.
 - Orientation of processes differ regionally.

> Vertebral ligaments

- Anterior and posterior longitudinal ligaments
- Interspinous and supraspinous ligaments
- Ligamenta flava: Connects from caudal articular process of 1 vertebrae to the cranial articular process of the neighbouring vertebrae. Highly elastic to allow stretching during forward flexion (but not too much) and compression during extension.

Disc prolapse: Occurs when bulge in intervertebral disc occurs leading to herniation and extrusion.

Joint degradation: Caused by thinning of articular cartilage and narrowing of joint space. Bony outgrowths form and encroach on adjacent structures – severe pain.

Sternal end

Supraspinous fossa

Medial border

Inferior angle

Spine of scapula

Coracoid process

Posterio

Acromion

Glenoid fossa

ateral border

Infraspinous fossa

-Bones of the upper back

> Shoulder girdle

- Clavicle: Long bone which supports upper limb.
 - Acromial and sternal ends for joints.
 - Muscle and ligament attachments.
- Scapula: Flat bone
 - Spine
 - Fossae (depressions) for muscle attachments
 - Acromion process: Where acromial end of clavicle attaches.
 - Coracoid process
 - Glenoid fossa: Shallow, flat depression for head of humerus.
- Humerus: Long bone head
 - Neck:
 - Anatomical: At margin of articular surface.
 Where should joint capsule attaches
 - Surgical: Common site of fracture operated on.
 - Tuberosities: Greater and lesser for muscle attachment.
 - Bicipital groove: For biceps tendon
 - Epicondyles: Medial and lateral for muscle attachment.
 - Condyles/articular surfaces: Capitulum and trochlea.

Greater tubercle Intertubercular (bicipital) groove Padial fossa Capitulum Coronold Trochlea Coronold Trochlea Capitulum Coronold Coronol

Forearm

- Ulna and radius: Long bones that are articular with each other (for pronation and supination) and
 the humanus Linked by interesses we man been a (deep face).
 - the humerus. Linked by interosseous membrane (deep fascia for muscle attachment points)
 - Ulna: Medial

Articular surfaces

- Trochlea notch: Deep, trochlea of humerus fits in here.
- Radial notch: Attachment site for radius.

Tuberosities

- Olecranon process: Bony prominence at elbow.
- Styloid process: Prominent bony point at wrist.
- Radius: Lateral

Articular surfaces

- **Head and fovea:** Depression at top of head.
- Ulnar notch: Prominence in shaft
- **Carpal articulation:** Surface for the carpal bones of the wrist.

Tuberosities

- Radial tuberosity
- Styloid process: Bony prominence at the wrist.

Hand

- Carpal: 8 carpal bones (short) make up the carpal arch proximal 4 and distal 4.
- o Metacarpals: Long bones. All have 1 metacarpal each
- Phalanges: Long bones.
 - Thumb: 2 phalanges
 - **Digits II-V:** Each have 3 phalanges
- Joints:

Radius: Articular joint.Ulna: Not articular joint.

-Joints of the upper limb

Stable joints:

Congruent (often deep) articular surfaces.

Tight capsule with strong ligaments.

Limited range of movement.

Mobile joints:

Ball and socket joints most stable. Stability often depend of fixator muscles Susceptible to subluxation or dislocation

> Clavicle joints

- o **Sternoclavicular joint:** Joint of the sternum and clavicle.
 - Saddle type synovial joint for elevation/depression and forward/backwards movement.
 - Intra-articular disc
 - Very strong capsule
 - Stabilised by costoclavicular ligament
- Acromioclavicular joint: Joint of the acromion and the clavicle
 - Plane synovial joint
 - Weak capsule
 - Stabilised by coracoclavicular ligament.

> Shoulder joints

- Glenhumeral joint: Joint of the glenoid cavity and the humerus.
 - Synovial ball and socket joint
 - Large humeral head to shallow glenoid fossa unstable.
 - Socket deepened by glenoid labrum
 - Supported by coracoacromial ligament, long head of biceps and rotator cuff muscles.
 - Rotator cuff: Cuff around humerus and keep it right to glenoid cavity.
 - o Supraspinatus: Resides in supraspinous fossa
 - o Infraspinatus: Resides in Infraspinous fossa
 - o Teres minor
 - Subscapularis: Resides in front.
- Dislocation: Lead to risk of nerve injury.
 - Anterior (most common)
 - Posterior (less common)

- Humerus drops inferiorly
- > **Scapulo-thoracic joint:** Not a true joint physiological joint.
 - o Allows movement of the scapula across the thoracic cage.
 - o Preserves length-tension relationships
 - Increase range of movement
 - o Prevents muscular impingement

Elbow joints

- Elbow joint: Hinge type synovial joint with strong collateral ligaments to reinforce capsule.
 - Radius is not articular with the capitulum throughout the full range of the elbow joint.
- Proximal radioulnar joint: Pivot type synovial joint between head of radius and radial notch of ulna.
 - Anular ligament: Encircles head of radius to keep radius close.
 - Radial collateral ligament: Attaches to anular ligament
 - Supination: Lateral rotation
 - Pronation: Medial rotation

> Wrist joints

- Distal radioulnar joint: Pivot type synovial joint between the head of the ulna and the ulnar notch on the distal radius.
 - Proximal and distal radioulnar joints linked by interosseous membrane function as 1 joint.
- Wrist joint: Radiocarpal joint, condyloid type synovial joint between the distal radius and carpal bones.
 - Articular disc is present on the ulnar side.

Hand joints

- Intercarpal joints: Between the bones of each row
- Midcarpal joint: Between the proximal and distal rows of carpal bones
- Carpometacarpal joints:
 - Thumb: Saddle type synovial joint.
 - Digits (II-V): Plane type synovial joints.

> Finger joints

- Metacarpophalangeal joints:
 - Thumb: Hinge joint
 - Digits (II-V): Condyloid joint.
- o Interphalangeal joints: Hinge joints.

-Muscles and movement of the upper limb

> Movement types

- Shoulder movements:
 - Retraction/protraction
 - Flexion/extension
 - Abduction/adduction
 - Medial rotation/lateral rotation
 - Circumduction

