❖ Week 1 – Fundamental concepts & Main approaches,

Cognitive processes and especially cognitive biases play a big role in the development and treatment of mental disorders

These processes include attention, memory, language perception, learning, problems solving and reasoning

Cognitive psychology precursors

Prior to psychology being known as a science, philosophers tried to understand perception, what was the position of the mind in the brain, sensations effect on perception & how humans interacted with the environment.

- From the 1920s 1950s, American psychology was dominated by behaviorism.
- Historically, cognitive psychology was unified by a common approach based on an analogy between the mind and computer.
- The information processing approach viewed the mind as a general purpose, symbol processing system of limited capacity.
- Trying to understand the mind goes back to philosophers Plato and Aristotle trying to explain the nature of human knowledge.
- The study of mind remained philosophical until the nineteenth century, when experimental psychology developed.
- Wilhelm Wundt and his students initiated laboratory methods for studying mental operations more systematically.
- Decades later experimental psychology became dominated by <u>Behaviourism</u>, a view that denied the existence of mind.
- *Behaviorist J. B. Watson*, said psychology should restrict itself to examining the relation between observable stimuli and observable behavioral responses and consciousness and mental representations was banished from respectable scientific discussion.
- In 1956 **George Miller** summarized numerous studies showing the capacity of human thinking is limited, with short-term memory limited to around seven items:
 - o memory limitations can be overcome by recoding information into chunks, mental representations that require mental procedures for encoding and decoding the information.
- John McCarthy, Marvin Minsky, Allen Newell, and Herbert Simon were founding the field of artificial intelligence.
- Noam Chomsky rejected behaviorist assumptions about language as a learned habit and proposed to explain language comprehension in terms of mental grammars consisting of rules.

The evolution of contemporary cognitive psychology

Today there are FOUR main approaches to cognitive psychology: **experimental cognitive psychology, cognitive neuropsychology, computational cognitive science & cognitive neuroscience (brain imaging).** Information from behaviour and brain activity are integrated and this approach is referred to cognitive neuroscience in a broad sense.

Cognition

- the ways our brains process information
- It includes mental processes such as attention, memory, learning, understanding language, problem solving and decision making is the way our brain processes information.
- Historically cognitive scientists have used the information-processing approach.
- Human cognition involves a mixture of top down & bottom up processing.
- There are two types of visual receptor cells in the retina: cones and rods.
- There are 6 million cones, mostly in the fovea, which are specialized for colour vision and sharpness.

- There are 125 million rods, which are specialized for vision in dim light and for movement detection:
- Impulses leave the eye via the optic nerve.
- The main pathway between eye and cortex is the retina-geniculate-striate pathway.
- Two stimuli adjacent to each other in the retinal image will also be adjacent to each other at higher levels within that system (retinopy).
- Signals proceed along two optic tracts within the brain.
- One tract contains information from the left half of each eye and the other tract from the right half.
- Nerves reach the primary visual cortex (V1) within the occipital lobe before spreading to secondary visual areas. There are two relatively independent channels within this system:

Visual systems in the brain

Fig. 1.1. A drawing of a section through the human eye with a schematic enlargement of the retina.

Processing in the retina

- Light waves enter the cornea & pass to the iris, with the iris' pupil dilating & contracting to let light in and keeping bright light out
- The lens focuses light onto the back of the eye & enters layers of the retina
- Photoreceptors (rods & cones) detect the light (millions of photoreceptors)
- Rods detect dim light but no colour, cones detect colour under normal light.
- The light goes through the **fovea**, which has **no rods** but **many cones**,
- When Light hits the photoreceptors & interacts with a molecule called photo pigment which starts a new reaction to propagate the signal which is transmitted to the bipolar cells
- Rods & cones make horizontal synapses with horizontal cells & bipolar cells
- The horizontal cells make inhibitory contact onto the bipolar cells which turn them into amacrine cells connecting the photoceptors to ganglion cells.
- The axons of the ganglion cells for the optic nerve that leaves the retina & travels along the lower surface of the brain
- cells pass the signal to the ganglion cells which is passed onto the optic disc (which cannot process visual information)
- The optic disc creates a natural blind spot but we don't notice this because information from the other eye & the brain fills in the gaps of information of the images that are processed by the retina.
- The main pathway bilaterally is the retina geniculate striate pathway which meets at the optic chiasma
- From the optic chiasma where the information from the nasal hemi-retina (nasal side of retina) of each eye crosses contralaterally
- The information from the temporal hemi-retina (temporal side of retina) is sent ipsilateral
- Most ganglion cell axons go to the lateral geniculate nucleus (part of the thalamus)

- A small number of axons go to the superior colliculus & part of the hypothalamus
- The axons that go to the lateral geniculate nucleus sends axons to other parts of the thalamus & the visual cortex.
- The cortex returns many parts of the thalamus, so the thalamus & cortex constantly send information back & forth

Rods

Predominate in the periphery of the eye.

Sensitive to motion.

Coarse detail and **no color** information.

Dim light

Cones:

Concentrated in the center of the retina (especially fovea.)

Sensitive to **color** and fine detail (high resolution).

Normal light

