Topic 1: Linear Algebra
 LINEAR SYSTEM

A set of simultaneous equations in which each variables occur to the power of 1 .
No XY; X ${ }^{2}$; $\operatorname{Sin}(\mathrm{x})$
Example: $2 \mathrm{x}+\mathrm{y}=5 \leftarrow$ describes a line
Solution set of $x=t ; y=5-2 t$, parameter $t \in \mathbb{R}$
Can also be written as :
$\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}t \\ 5-2 t\end{array}\right]=\left[\begin{array}{l}0 \\ 5\end{array}\right]+t\left[\begin{array}{c}1 \\ -2\end{array}\right]$

TYPES OF 2 INTERSECTING LINES

- Non- intersecting and parallel (If this is the case, the system is inconsistent)
- Unique Intersection (System is consistent, there is an intersection point)
- Non-unique Intersection(System is consistent, there is an intersection point)

EQUATION

Can be written as

$$
A x=b
$$

where A is $m x n$ matrix
M is no. of rows (equations)
N is no. of columns (unknowns)

Put the above in augmented form $[\mathrm{A} \mid \mathrm{b}]$
$\left[\begin{array}{ccc|c}a_{11} & a_{12} & & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & & a_{m n} \\ b_{2} & b_{m}\end{array}\right]$

RULES FOR ELEMENTARY ROW OPERATIONS (APPLIED TO AUGMENTED MATRIX)

1. Multiply row by a non-zero constant
2. Swap 2 rows
3. Add substract multiple of 1 row to another

Ex: $x+y+z=2$
$2 x+y=4$
$x-y-z=0$

Becomes easy to solve as it's in triangular form. Called row echelon form.
Qualifications of Row Echelon Form:

1. The first non-zero number ("leading entry") in each non-zero row is 1 , called a leading 1
2. Lower leading 1 s appear to the right of the higher leading 1 s (step formation)
3. All zero rows appear at the bottom of the matrix (entries below steps are 0)

Reduced Row Echelon Form

4. A column with a leading 1 consists of 0 s everywhere else. The number of leading 1 s in row echelon form is the RANK. Row echelon form of a matrix is not unique (lotsof solutions) but rank is well defined.

GAUSSIAN ELIMINATION

STEP 1: Interchange rows \rightarrow so top of first column has a non-zero entry
STEP 2: Multiply first row by $\neq 0$ number \rightarrow so first non-zero term $=1$ (leading 1)
STEP 3: Add multiple of top rows to lower rows \rightarrow entry below leading $1=0$
STEP 4: Repeat steps for all rows
ADDITIONAL STEP TO GET RREF (GAUSS-JORDAN ELIMINATION)
STEP 5: For each leading 1, add multiple of below rows to make entry above each leading $1=0$
\{Tips: Better to work backwards\}

$$
R A N K+\# P A R A M E T E R S=\# U N K N O W N S+\# C O L U M N S
$$

HOMOGENEOUS EQUATIONS \rightarrow HAVE SOLUTION

- $A x=0$ is a unique solution if rank $A=n$ ($\mathrm{m} \times \mathrm{n}$ matrix)
- Infinitely many solutions if rank $\mathrm{A}<\mathrm{n}$
- Rank is the number of non-zero rows in the row echelon form

INHOMOGENEOUS EQUATIONS \rightarrow NO SOLUTION

- Rank A < Rank B [A|b]

IDEA OF PROOF

- If $B=$ RREF of A; $A x=0$ has the same solution set as $B x=0$
- If Rank $A=n=\#$ of columns in A; The RREF will have 1 leading entry in each column. \rightarrow Meaning: Have unique solution
- If Rank B < n (\# of columns in B) ; There will be columns with no leading entry. \rightarrow Meaning: Presence of Parameters (\# of unknowns) can solve uniquely for other parameters in terms of unknown. Have infinite solutions.

PROPERTIES OF SCALAR MULTIPLICATION

$$
\begin{aligned}
& (a+b) C=a C+b C \\
& \text { where a and } \mathrm{b} \text { are scalars and } \mathrm{c} \text { is the matrix } \\
& a(B+C)=a B+a C \\
& a(b C)=(a b) C
\end{aligned}
$$

Trace of square matrix is the sum of elements on the main diagonal

PROPERTIES OF MATRIX ADDITION

$A+(B+C)=(A+B)+C \cdots \cdots \cdots$ Associative Law
$(A+B)^{T}=A^{T}+B^{T}$
Example: Let $A=\left[\begin{array}{ll}1 & 0 \\ 2 & 3\end{array}\right]$ and $B=\left[\begin{array}{ll}4 & 3 \\ 2 & 1\end{array}\right]$. Calculate $A B$ and $B A$

$$
\begin{aligned}
A B & =\left[\begin{array}{ll}
1(4) & 1(3) \\
8+6 & 6+3
\end{array}\right]=\left[\begin{array}{cc}
4 & 3 \\
14 & 9
\end{array}\right] \\
B A & =\left[\begin{array}{cc}
4(6) & 9 \\
2+2 & 3
\end{array}\right]=\left[\begin{array}{cc}
10 & 9 \\
4 & 3
\end{array}\right]
\end{aligned}
$$

Same Trace! $\operatorname{tr}(A B)=\operatorname{tr}(B A)$

