MAST10008 – Accelerated Mathematics 1 Notes

Topic 1: Linear Algebra

LINEAR SYSTEM

A set of simultaneous equations in which each variables occur to the power of 1. No XY; X^2 ; Sin(x)

Example: 2x + y = 5 \leftarrow describes a line

Solution set of x=t; y= 5-2t, parameter $t \in \mathbb{R}$

Can also be written as:

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} t \\ 5 - 2t \end{bmatrix} = \begin{bmatrix} 0 \\ 5 \end{bmatrix} + t \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

TYPES OF 2 INTERSECTING LINES

- Non- intersecting and parallel (If this is the case, the system is inconsistent)
- Unique Intersection (System is consistent, there is an intersection point)
- Non-unique Intersection(System is consistent, there is an intersection point)

EQUATION

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{12}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$a_{m1}x_1 + a_{m2}x_{m2} + \dots + a_{mn}x_n = b_m$$

Can be written as

$$Ax = b$$

where A is $m \, x \, n$ matrix

M is no. of rows (equations)

N is no. of columns (unknowns)

Put the above in augmented form [A|b]

$$\begin{bmatrix} a_{11} & a_{12} & a_{1n} & b_1 \\ a_{21} & a_{22} & a_{2n} & b_2 \\ \vdots & \vdots & a_{mn} & b_m \end{bmatrix}$$

RULES FOR ELEMENTARY ROW OPERATIONS (APPLIED TO AUGMENTED MATRIX)

- 1. Multiply row by a non-zero constant
- 2. Swap 2 rows
- 3. Add substract multiple of 1 row to another

Ex:
$$x + y + z = 2$$

 $2x + y = 4$
 $x - y - z = 0$

$$\begin{bmatrix}
1 & 1 & 1 & | & 2 \\
2 & 1 & 0 & | & 4 \\
1 & -1 - 1 & | & 0
\end{bmatrix}$$
 $R2 \to R2 - 2R1$

$$\begin{bmatrix}
1 & 1 & 1 & | & 2 \\
0 & -1 - 2 & | & 0 \\
0 & -2 - 2 & | & -2
\end{bmatrix}$$
 $R2 \to -R2$

$$\begin{bmatrix}
1 & 1 & 1 & | & 2 \\
0 & 1 & 2 & | & 0 \\
0 & 0 & 2 & | & -2
\end{bmatrix}$$
 $R3 \to R3 + R2$

Becomes easy to solve as it's in triangular form. Called row echelon form.

Qualifications of Row Echelon Form:

- 1. The first non-zero number ("leading entry") in each non-zero row is 1, called a leading 1
- 2. Lower leading 1s appear to the right of the higher leading 1s (step formation)
- 3. All zero rows appear at the bottom of the matrix (entries below steps are 0)

Reduced Row Echelon Form

4. A column with a leading 1 consists of 0s everywhere else. The number of leading 1s in row echelon form is the RANK. Row echelon form of a matrix is not unique (lotsof solutions) but rank is well defined.

MAST10008 – Accelerated Mathematics 1 Notes

GAUSSIAN ELIMINATION

STEP 1: Interchange rows \rightarrow so top of first column has a non-zero entry

STEP 2: Multiply first row by $\neq 0$ number \rightarrow so first non-zero term = 1 (leading 1)

STEP 3: Add multiple of top rows to lower rows \rightarrow entry below leading 1 = 0

STEP 4: Repeat steps for all rows

ADDITIONAL STEP TO GET RREF (GAUSS-JORDAN ELIMINATION)

STEP 5: For each leading 1, add multiple of below rows to make entry above each leading $\mathbf{1} = \mathbf{0}$

{Tips: Better to work backwards}

RANK + #PARAMETERS = #UNKNOWNS + #COLUMNS

HOMOGENEOUS EQUATIONS → HAVE SOLUTION

- Ax = 0 is a unique solution if rank A = n (m x n matrix)
- Infinitely many solutions if rank A < n
- Rank is the number of non-zero rows in the row echelon form

INHOMOGENEOUS EQUATIONS \rightarrow NO SOLUTION

• Rank A < Rank B [A|b]

IDEA OF PROOF

- If B = RREF of A; Ax = 0 has the same solution set as Bx = 0
- If Rank A = n = # of columns in A; The RREF will have 1 leading entry in each column. → Meaning: Have unique solution
- If Rank B < n (# of columns in B); There will be columns with no leading entry. → Meaning: Presence of Parameters (# of unknowns) can solve uniquely for other parameters in terms of unknown. Have infinite solutions.

PROPERTIES OF SCALAR MULTIPLICATION

$$(a + b)C = aC + bC$$

where a and b are scalars and c is the matrix
 $a(B + C) = aB + aC$
 $a(bC) = (ab)C$

Trace of square matrix is the sum of elements on the main diagonal

PROPERTIES OF MATRIX ADDITION

$$A + (B + C) = (A + B) + C \cdots Associative Law$$

 $(A + B)^T = A^T + B^T$

Example: Let
$$A = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$. Calculate AB and BA
$$AB = \begin{bmatrix} 1(4) & 1(3) \\ 8+6 & 6+3 \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ 14 & 9 \end{bmatrix}$$
$$BA = \begin{bmatrix} 4(6) & 9 \\ 2+2 & 3 \end{bmatrix} = \begin{bmatrix} 10 & 9 \\ 4 & 3 \end{bmatrix}$$

Same Trace! tr(AB) = tr(BA)