FINANCIAL MATHS I

Important equivalents

Some important equivalents of i and d,

$$
\begin{gathered}
v=1-d \\
(1-d)(1+i)=1 \\
\left(1-\frac{d^{(p)}}{p}\right)\left(1+\frac{i^{(p)}}{p}\right)=1 \\
1+i=\left(1+\frac{i^{(p)}}{p}\right)^{p} \\
1-d=\left(1-\frac{d^{(p)}}{p}\right)^{p}
\end{gathered}
$$

1.4 Interest rates that vary over time Effective rate of interest per time unit for period $(t, t+1)$ denoted as $i(t)$
\rightarrow Value of 1 at time t becomes $1+i(t)$ at time $(t+1)$
\rightarrow Usually $i(t)$ is denoted as a form of function, for example $i(t)=0.05+0.001 t$

Nominal rate of interest $\left[i_{h}(t)\right]$, means that the effective rate of interest for a period of length h, starting at time \mathbf{t} is $\boldsymbol{h} \cdot \boldsymbol{i}_{\boldsymbol{h}}(\boldsymbol{t})$.

Illustration

$i_{0.7}(0)=0.08$,
This statement means that, the interest rate is $\mathbf{0 . 0 8}$ for $\mathbf{0 . 7}$-time unit and the amount $\mathbf{1}$ at time $\mathbf{0}$ become $\mathbf{1}+(\mathbf{0 . 0 8} \cdot \mathbf{0 . 7})$ at time $(\mathbf{0}+$ 0.7).

Accumulation
$A\left(t_{1}, t_{2}\right)$ is the accumulation at time t_{2} of an investment 1 at time t_{1}

$$
\therefore A(t, t+h)=1+h \cdot i_{h}(t)
$$

Rearranging formula above, we can conclude that,

$$
\therefore i_{h}(t)=\frac{A(t, t+h)-1}{h}
$$

Consistent market

If $t_{1}<t_{a}<t_{b}<t_{2}$, then the following is true

$$
\therefore \boldsymbol{A}\left(\boldsymbol{t}_{1}, t_{2}\right)=\boldsymbol{A}\left(\boldsymbol{t}_{1}, \boldsymbol{t}_{a}\right) \cdot \boldsymbol{A}\left(\boldsymbol{t}_{a}, \boldsymbol{t}_{b}\right) \cdot \boldsymbol{A}\left(\boldsymbol{t}_{b}, \boldsymbol{t}_{2}\right)
$$

1.5 The force of interest

The force of interest at time t (denoted as $\delta(t)$) is the limit of nominal interest rate
$\boldsymbol{i}_{\boldsymbol{h}}(\boldsymbol{t})$ as the interval time \mathbf{h} tends to $\mathbf{0}$ from above.

$$
\therefore \delta(t)=\lim _{h \rightarrow 0^{+}}\left[i_{h}(t)\right]
$$

As we know that from 1.4 that

$$
i_{h}(t)=\frac{A(t, t+h)-1}{h}
$$

Assuming that it is in a consistent market,

$$
\begin{gathered}
\delta(t)=\lim _{h \rightarrow 0^{+}}\left[\frac{A(t, t+h)-1}{h}\right] \\
\delta(t)=\frac{1}{A(0, t)} \lim _{h \rightarrow 0^{+}}\left[\frac{A(0, t+h)-A(0, t)}{h}\right]
\end{gathered}
$$

Suppose $F(t)$ is the accumulated value at time t for investment at time 0

$$
\delta(t)=\frac{1}{F(t)} \lim _{h \rightarrow 0^{+}}\left[\frac{F(t+h)-F(t)}{h}\right]
$$

By the definition of derivatives,

$$
\begin{gathered}
\lim _{h \rightarrow 0^{+}}\left[\frac{F(t+h)-F(t)}{h}\right]=\frac{d}{d t}[F(t)]=F^{\prime}(t) \\
\delta(t)=\frac{F^{\prime}(t)}{F(t)}=\frac{d}{d r}[\log F(r)]
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
\therefore & A(0, t)=F(t)=\exp \left\{\int_{0}^{t}[F(r)] d r\right\} \\
& \therefore A(t, t h)=\exp \left\{\int_{t}^{t+h}[F(r)] d r\right\} \\
\therefore & 1+h \cdot i_{h}(t)=\exp \left\{\int_{t}^{t+h}[F(r)] d r\right\}
\end{aligned}
$$

1.6 Present value with vary interest rates
[$A(0, t)]^{-1}$ is the PV of 1 due at time t, recall that this is the definition of v. Therefore,

$$
\therefore v(t)=\exp \left\{-\int_{t}^{t+h}[F(r)] d r\right\}
$$

