$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
$$

e.g. P(throwing an odd number and throwing a number less than 4)
$=\frac{3}{6}+\frac{3}{6}-\frac{2}{6}$
$=\frac{2}{3}$

Contingency Tables

- Useful technique to visualise events
- Used to classify events according to two or more identifiable characteristics
e.g.

	Ace	Not Ace	Total
Red	2	24	26
Black	2	24	26
Total	4	48	52

- Contingency tables are converted into probability tables
e.g.

	Ace	Not Ace	Total
Red	$2 / 52$	$24 / 52$	$26 / 52$
Black	$2 / 52$	$24 / 52$	$26 / 52$
Total	$4 / 52$	$48 / 52$	1

Red $=$ joint probability
Blue $=$ marginal probability

Conditional probability

- The probability of an event occurring, given that another event has occurred indicates that they are dependent events
- Conditional Probability: for dependent events, the probability of event A given the condition that event B has already occurred is written as: $P(A / B)$
$\mathrm{P}(\mathrm{A} / \mathrm{B})=\frac{P(A \cap B)}{P(B)}$

