ECON2300 Summary

Lecture 1

1. Economics and Econometrics

Econometricians are not just concerned with measuring the size of economic variables – they are interested in measuring and assessing the strength and form of economic relationships

2. Statistics

- Descriptive statistics
 - Deals with the methods for the organizing, summarizing and presenting numerical data in a convenient form (e.g. mean, variance)
- Inferential statistics
 - Concerned with methods, procedures and protocols that assist us with making inferences about the whole population based on information contained in a sample (e.g. estimation, hypothesis testing, prediction)

3. Random variables

- Discrete random variables
 - An assume only a finite number of different values
 - Discrete probability distribution
 - Binomial distribution
- Continuous random variables
 - Can assume all the values in some interval
 - Normal distribution
 - Chi-square distribution
 - T-distribution
 - F-distribution

4. Sampling distribution

If the distribution of X is non-normal but n is large then \overline{X} is approximately normally distributed. The approximation is good when $n \ge 30$.

5. Estimators

- Point estimator
 - A rule or formula which tells us how to use a set of sample observations to estimate the value of a parameter of interest
 - The value obtained after the observations have been substituted into the formula

Desirable properties

- Unbiasedness $\mu = E(X)$
- Efficiency
- Consistency $\sigma^2 = E(X \mu)^2$
- Sufficiency \overline{X} , $\hat{\sigma}^2$

Key points:

1. test statistic

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$
$$t - stat = \frac{b_k - \beta_k}{se(b_k)}$$

2. Confidence interval (interval estimate)

$$\overline{X} \pm Z\alpha_{/2} \cdot \frac{\sigma}{\sqrt{n}}$$

$$b_k \pm t_{(1-\alpha_{/2},N-K)} \cdot se(b_k)$$

A range of values that gives us information about the location of a population parameter, and about the precision with which we estimate it

3. Goodness-of-fit

$$R^2 = 1 - \frac{SSE}{SST} = 1 - \frac{Sum \ of \ sqaured \ residual}{(S. \ D. \ dependent \ var)^2 \cdot (n-1)}$$
• \underline{R}^2 measures the proportion of the variation in the dependent variable that is

- explained by the regression model
- For the non-linear relationship, the goodness-of-fit is computed by the generalized R²:

$$R_g^2 = [Corr(y, \hat{y})]^2$$

= 0.912²
= 0.8318

	PROD	PRODF
PROD	1.000000	0.912033
PRODF	0.912033	1.000000

4. Hypothesis for $\beta = 0.5$ (not 0)

a.
$$H_0: \beta_2 = 0.5$$

 $H_1: \beta_2 \neq 0.5$

b. Reject H_0 if |t-stat| > |t-crit|

Two-tail test:
$$t-crit=t_{(\alpha_{/2},n-k)}$$
 One-tail test: $t-crit=t_{(1-\alpha_{/2},n-k)}$