Lecture 3

Sample statistic; describes a sample eg; sample mean (x bar)
Population parameter; describes a population eg: μ (population mean)
Sampling distribution; distribution of the sample statistic (take more than one sample and compare the means of the sample).

Error; unexplained variation

- Bias; difference b / w the true value and the measured value.
- Concerns the centre of the sampling distribution
- Reduced using random sampling
- Precision; variability of the measurements
- Concerns the spread of the sampling distribution
- Reduced by increasing the sample size

Sampling error; difference b / w sample statistics and population parameters. Reduced by increasing the sample size eg: the difference $b / w \mu$ and x bar.

Non-sampling error; any other error eg; sample is not reflective of the entire population, biased language which imposes a response (selection bias), measurement bias, measurement error. Reduce by random sampling and carful examining.

Observational studies; just observe without controlling or treating.
Experiment; intervention eg; treatments, comparing the effects.
Lurking variables; anything you haven't observed which could have an impact on the relationship/result of the study eg; gender. Aim to remove when collecting data.

Randomisation; using chance in a study

- Random sampling; any difference between the sample and the population is due to sampling variation
- Can carry out after blocking if a variable may have an impact on the response variable.

Replication; repeating data collection to reduce variation.
Blocking; randomisation within different subsets - if believed to impact the results.
Designing a study;

- Objective
- Population of interest
- Sampling procedure
- Variables which need measuring
- How much data is needed
- Data analysis

Probability; how likely something is to occur.
$P=$ no. of times the event occurs/sample size.
$P(A)=0$; never occurs.
$P(A)=1$; certain to occur.

The sum of the probabilities must be equal to 1 .
Determining probabilities;

- Subjective; informed by prior experience
- Empirical; perform experiment to count the proportion of successful outcomes.
- Model-based; imply particular probabilities.

Mutually exclusive events; cannot occur at the same time- therefore no overlap of events. $P(A \cup B)=P(A)+P(B)$

Collectively exhaustive events; all outcomes (one outcome must occur) eg; coin toss, one outcome must occur, each outcome makes up the fixed number of outcomes.

Union; event A or event b or both [A U B]
Intersection; event A and B occur at the same time - there is overlap [A $\cap B$]
For events that aren't mutually exclusive; both may occur at the same time and therefore we must remove the double count (overlap) when calculating probability.

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Contingency tables; total must equal 100% or 1 .

- Marginal probabilities in the margins
- Join probabilities in the intersections.

Conditional probability; $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{A}$ and B$) / \mathrm{P}(\mathrm{B}) \mathrm{OR} \mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \mathrm{P}(\mathrm{B})$. Calculates the probability of one variable given that another has already occurred.

Tree diagrams;

- $1^{\text {st }}$ branch; marginal probabilities.
- $\quad 2^{\text {nd }}$ branch; conditional probabilities.

Multiply the two to get the joint probabilities.
Sensitivity; true positive result
$P(+$ ve result | disease present)/P(disease present)
Specificity; true negative result
P (-ve result | no disease present)/P(no disease present)
Independence; if A and B are independent than whether A happens or not has no effect on the probability of B occurring. Conditions for independence;

$$
\begin{aligned}
& P(A \mid B)=P(A) \\
& P(B \mid A)=P(B) \\
& P(A \text { and } B)=P(A) P(B)
\end{aligned}
$$

