Molecular Biology and Genomics MBLG2071/2971 Study Notes

Composition of DNA

Functions of DNA:

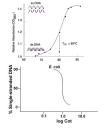
- Phenotypic = controls phenotype
- Genotype = transmission of genetic information
- Evolutionary = variation through mutation

DNA composition:

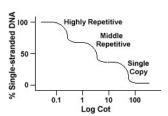
- Biopolymer of nucleotides (base, sugar and phosphate) double stranded
- Sugar:
 - 1st Carbon: N-glycosidic bond joins base to sugar
 - o 2nd Carbon: Deoxy sugar (OH missing)
 - o 3rd Carbon: 3' OH joins to 5' phosphate of sugar below
 - o 4th Carbon: joins to first carbon
 - o 5th Carbon: 5' Phosphate attached joins sugar above phosphate bond
- Bases:
 - o Purine = 2 rings:
 - Adenine NH2/amine group (top)
 - Guanine Oxygen/ketone (top) and HN2 group (side)
 - Pyramidine = 1 ring:
 - Thymine Methyl group and two oxygens
 - Cytosine NH2 group (top) and Oxygen (side)
 - Uracil No methyl group
- Base pairs: hydrogen bonds
 - o A+T Amine group of A gives H to ketone group to T and ring N of T gives H to ring N of A
 - G+C Amine groups give H to matching ketone groups and G ring N gives to C ring N

Features of Chromosomes

- Origin of replication: genomic DNA sequences that initiate replication
 - o Bacteria only has 1
 - Eukaryotes have many
- Centromere
 - Where spindle attaches during chromosome separation
 - Defines the position of markers on a chromosome as it is different for every chromosome
 - o Divides chromosome in 2 arms
 - Short arm = p
 - Long arm = q
- Telomeres
 - o Ends of chromosomes
 - Simple repeating structure
 - o Allows ends to be replicated
 - o Distinguishable from break in chromosome
- Stains:
 - o Giemsa forms G bands each chromosome has different bands
 - o Feulgen:
 - Dark = heterochromatin = dense = repeats
 - Weak = euchromatin = not condensed = actively transcribed genes


Compaction of DNA

- Prokaryotes Supercoiled loops (folded genome)
- Eukaryotes DNA winding around histone proteins (Chromatin)
 - o Core histones H2A, H2B, H3 and H4
 - o Each of these form a dimer and then they all join together to create core octamer
 - Nucleosome = histone core with core DNA wrapped around it
 - Nucleosomes joined by linker DNA and linker histone (H1) = tighter wrapping- pulls it together 6X
 - o Forms 30nm fibre


- Loops of fibres held together by nuclear scaffold proteins
- o Many loops make up chromosome (DNA, histone proteins and non-histone proteins) 40X compaction
- Packaging and expression
 - DNA releases and rebinds to histone allowing transcription factors and other regulatory proteins to gain access when needed
 - Chromatin remodelling (moving nucleosomes) nucleosome remodelling complexes use ATP to move nucleosomes and allow access for proteins e.g. polymerases to specific sites two types:
 - Sliding slide nucleosome over
 - Displacement remove nucleosome (histone core)
 - Chromatin modification (changing chemical groups on histone proteins)
 - Each histone proteins have a different N-terminal tail that contains amino acid residues that can be altered by adding or removing chemical groups
 - E.g. Histone acetyl transferases (HATs) add acetyl groups to lysine residues and histone deacetlyases remove them (HDACs)
 - This modification changes charges or recruits other proteins to change its interaction with DNA/packaging and hence alter expression

C-Value

- C-value = genome size of an organism (pictograms in a haploid set of DNA)
- Humans = 3.5, Shrimp = 15
- Paradox = disparity between C value and relative complexity of an organism (c value not related to complexity)
- Genome is made out of:
 - o Genes and related sequences (introns etc.)
 - o Intergenic DNA (genome wide repeats, regulatory regions, miRNA, microsatellites)
- Studying genome composition:
 - Melting curve: DNA melted and monitored using UV spectrometry at 260nm (shows melting temperature by vertical part of line – large jump in absorption from double stranded to single stranded)
 - Reassociation curve:
 - Simple DNA: DNA cut into manageable lengths, melted and reannealed –
 measured by UV absorbance decrease from single stranded to double stranded

- Complex DNA: Triphasic (3 kinds of sequences) show 3 different steps on reannealing curve:
 - Highly repetitive sequences reanneal first due to more sequences to pair with (highest step):
 - o Microsatellites (around centromere and telomeres)
 - Tandem arrays of short repeated units
 - Dinucleotide repeats
 - Moderately repetitive sequences reanneal next (Middle step):
 - Multiple copy protein-coding genes
 - o Ribosomal and transfer RNAs
 - Genome wide repeats:
 - LINEs (long) Autonomous poly-A retrotransposons – contains all information needed to transpose by itself (move to other areas of the genome while leaving a copy behind) e.g. L1
 - SINEs (short) nonautonomous need to hijack activities from LINEs to transfer successfully e.g. Alu

- Non-repetitive sequences reanneal last (bottom step):
 - Single copy protein coding genes

G-Value

- Paradox = number of protein coding genes (gene number) relates to complexity of organism
- However, some organisms make more use of alternative splicing
- Also, Non-protein coding sequences = also transcribed and also important but not counted in G value:
 - o Infrastructural RNAs:
 - Ribosomal and Transfer RNA affect translation
 - Small nuclear used in spliceosome and affect splicing
 - Other non-coding RNAs: Small regulatory RNAs: