Animal Ecological Physiology BIOL3045/3945 Study Notes

Ecological and Evolutionary Physiology

- Physiology = provides mechanisms
- Evolution = Defines history
- Ecology = Describes patterns
 - Need to understand all of these to determine how an organism will respond to an environmental change such as climate change
 - Correlations of animal population shifts with increasing temperatures can suggest climate change is the cause however may be due to other factors such as fishing/hunting, introduced species etc.
 - Therefore, need to use experimental manipulation to explain cause and effect = experimental biology

Sources of variation

- Individuals
 - Principal target for selection differences in individuals allows those with more preferable traits to be selected for
 - Association of traits can be used to explain function e.g. rats with faster muscle activation have lower ryanodine receptor mRNA - test to show that one causes the other
- Populations
 - Phenotypic variance = genetic effects + environmental effects + Interaction
 - Genetic effects = natural and artificial selection (populations are different in the same environment)
 - Environmental effects = deviation from genetic values (same populations change in different environments)
 - Gene-Environment interaction = response to variable environments (different populations have different responses in different environments)
- Species

Phenotypic Plasticity

- Changing phenotypes of the same organism due to different environments differences within individuals
- When environment causes development of alternative phenotypes by a given genotype
- Every individual inherits the genetic capability to produce each of the different phenotypes however the actual phenotype depends on the particular environment it experiences
- Reaction norm = phenotypic expression of a single genotype exposed to different acute environmental conditions
- Phenotypic plasticity causes a shift in a reaction norm due to a chronic change in the environment

Mechanisms underlying phenotypic plasticity

- Development
 - o Genotype stays the same but access to genes altered
 - Genetic capability maintained across generations
 - Developmental modifiers selected for
- Acclimation
 - o Physiological change in response to an environmental factor
 - Reversible changes within adult phenotypes
 - Genetic capability not altered

- Selection
 - o Changes in genotype
 - o Genetic capability to produce phenotypes may also change
- Generalist-Specialist trade-off
- Stable environmental conditions across generation
 - Selection for phenotypes that are suited to those conditions = specialisation
- Variable environmental conditions
 - o Favours phenotypes that maintain performance across a broad range of conditions = generalisation
- Trade-off
 - Maximum performance of generalists is lower than that of specialists (their reaction norm is wider but the peak is not as tall as specialists)

Thermal Adaptation

- Thermal biology = temperature influences all biological functions and temperature responses at the molecular level influence whole-animal performance and ecology
- Responses to temperature variation
 - Daily = behaviour in environment
 - Seasonal = migration
 - Years = adaptation
- Effect of temperature on organisms
 - Below optimum temp = Thermodynamics
 - Reaction rates slow down
 - Capacity limitation
 - Above optimum temp = Damage
 - Proteins denature, membranes melt
 - Critical temp = death
- Co-evolution
 - Endotherms regulate body temp to regulate internal processes
 - o Ectotherms live in particular thermal environments where internal process are optimised

Adaptation

- Definition: Heritable changes in a phenotype that results from natural selection and increases fitness of an organism in a particular environment
- Measuring fitness = reproductive output (or proxy measures such as locomotion and metabolism)
- Natural selection acts on genetic variability in a population
 - Stabilising = decrease in genetic variance
 - Directional = shift in allele frequencies
- Adaptation of reaction norms
 - o Animals distributed across different climate gradients
 - Different selection pressures in different environments creates new reaction norms optimum temp shifts up or down shifting the reaction norm with it
 - Eventually if one species is separated in different climate gradients for long enough, reproductive isolation and occur and the species will no longer be able to mate creating 2 different species
- Reaction rate-temperature relationship
 - Slope of the relationship = E
 - Thermal specialists have high E (large slope) because small changes in temp cause large change in reaction rates
 - Thermal generalists have low E (small slope) because they can function pretty well in many temperatures so a small increase in temp only causes a slight change in reaction rate
- Genetic drift