Describing Data:

- **Descriptive Statistics:** Describing categorical and quantitative variables and the relationships between them via 2 aspects:
 - 1. How to visualize data using graphs
 - 2. How to summarise data (key aspects) using numerical quantities (summary statistics)

Categorical Variables:

- ONE CATEGORICAL VARIABLE:
 - Proportion: Summary statistic helping describe categorical variables ∘ Sum of proportions is 1

$$P/\hat{p} = \frac{no.in\ category}{total\ sample\ size}$$

•

- **Relative Frequency:** Shows proportions o Enables making comparisons without referring to the sample size
- Bar/ Pie Charts: Used to visually explain proportions

TWO CATEGORICAL VARIABLES:

- Relationship i.e. group of people 2 categories are male/ female
- Useful measure of ASSOCIATION
- Two-Way Table: Shows the relationship between 2 categorical variables
- **Side by side chart:** Visual representation of this

Testing in Normal Distributions:

Normal Distribution:

- Distributions of common statistics following a bell-shaped pattern Uses μ , $\sigma \rightarrow N$ (μ , σ)
- Density Curve: Reflects the location, spread and shape of the distribution
 - Total area under the curve is 1→ 100% of the distribution
 - Area <u>over</u> an interval is the proportion <u>within</u> the interval •
 DOESN'T HAVE TO BE A NORMAL CURVE!
- Normal Density Curve: Follows a normal, bell-shaped distribution N
 (μ, σ)
 - Centered on µ
 - 95% of the data is $\mu \pm 2\sigma$

- Standard Normal N(0,1): z-distribution used as a basic way to compare different distributions
 - Convert normal distributions to z-scores
 - To convert from $X \sim N \ (\mu, \ \sigma)$ to $Z \sim N(0,1)$ use **Z-SCORE** FORMULA!!!

<u>Confidence Intervals and P-Values Using Normal</u> <u>Distributions:</u>

- For categorical data, the parameter = p for proportion
- For numerical data the parameter = μ for mean
- Central Limit Theorem: For a large enough sample size, the distribution of sample proportions and means will be approximately normally distributed and centered at the population parameter (p or μ)
 - $n \ge 30 \rightarrow$ for quantitative variables
 - $n \ge 10 \rightarrow$ for categorical variables
 - As n increases, the distribution gets more closely approximated to the normal distribution and σ decreases
- Confidence Interval:

Confidence Interval: Sample Statistic \pm $Z^* imes$

SE

Z* area reflects the desired level of confidence

- How to apply/ test for Confidence Intervals:
 - 1. Confirm the sampling distribution can be approximated by normal distribution
 - Check CLT applies
 - 2. Find z* for the P% CI
 - 3. Obtain the P% CI using formula
- **P-Values in a normal distribution:** Standardise the value of the statistic from the original sample, using the Ho μ and the randomization SE

Hypotheses tests based on a normal distribution: The normal distribution should be consistent with Ho so the μ is determined by Ho • Compute standardized test statistic using:

$$Z = \frac{SS - Ho}{SE}$$

- \circ This formula calculates the number of SEs the statistic is from Ho, consequently allowing us to assess the extremity on a **COMMON SCALE**
 - ❖ If the statistic is normally distributed under Ho, the pvalue is the N (0,1) probability beyond z

In order to apply the CI and hypotheses testing for a normal distribution, then we need to **CALCULATE THE SE FOR DIFFERENT PARAMETERS!!!!!