TOXICOLOGY //

Study of poisons include ...

- 1) Identification & characterisation
- 2) Physical & Chemical properties
- 3) Biological effects
- 4) Fate in the body

Terminology //

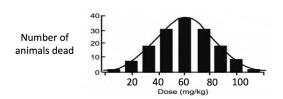
Toxin: cause adverse health effects when in contact / enters body

Toxic: describes the effects of poison on biological systems

Toxicosis: describe the syndrome of adverse health effects that result from exposure to toxin

*syndrome = combined effect of symptoms

Types //


- Metals
 - Lead from Batteries or Paint
- Mycotoxins/ Bacterial Toxins
 - □ Perennial Ryegrass Staggers fungal infection of ryegrass, consumption leads to neurological syndrome
 - ☐ Blue Green Algae cyanobacteria contaminated water
- Pharmaceutical Drugs
 - □ Paracetamol toxicity in cats
- Insecticides
 - Rodenticides
- Toxic Plants & Animals
 - ☐ Patterson's Curse toxic to horses
 - Brown Snake's venom

Challenges in Veterinary Toxicology //

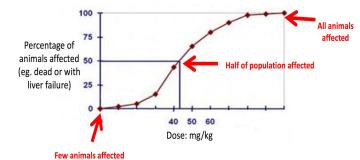
- 1. Large no. of animals in herd
- 2. Numerous spp with different MoA & effects
- 3. Safe consumption of production animals in humans \rightarrow Withdrawal Period
- 4. Malicious Poisoning

Dose-response relationship

Key Concept: Dose makes the Poison

No. of dead animals vs. dose.

Quantal //


ightarrow either present or not present $\, \dots \,$ dead or alive $\, \dots \,$ liver failure or no liver failure

Continuous //

- → painkiller mild to large to toxic relieve of pain
- → sedation mild to strong to toxic sedation
- → Normal distribution curve above allows us to plot ...

// DOSE-RESPONSE CURVE:

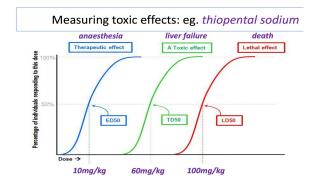
Graphical rep of distribution of responses in a **POPULATION** to different doses of a toxin

% of affected animals vs. dose

Dose-Response Curve measures ...

• Therapeutic Effect

ED50 -- Effective Dose:

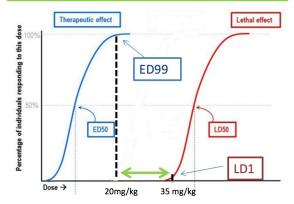

50% pop - therapeutic effect

Toxic Effect

TD50 -- Toxic Dose: 50% pop - toxicity

Lethal Effect

LD50 -- Lethal Dose: 50% pop - death



Margin of safety = $\frac{LD1}{ED99}$

Use dose-response curve to understand...

// MARGIN OF SAFETY

→ index of effectiveness & safety

NARROW Margin of Safety = UNDESIRABLE!

*LD1 = Lethal dose in 1% pop ED99 = Effective dose in 99% pop

//

Dose Calculation: TOTAL DOSE (mg) / WT OF ANIMAL (kg) = DOSE (mg/kg) E.g. Cat ingests paracetamol ...

- 1) Calculate total dose (mg) ingested
- 2) Divide total dose (mg) by weight of animal (kg)
- 3) Check value against TD50 of drug dose

TOXICOKINETICS //

Movement and fate of toxins once they contact / enter the body.

ADME

II

Absorption

Process where toxins gain entry to body from ext. envt by crossing cellular barrier via ...

- GIT
- Respiratory
- Dermal
- (Injection) *when drug meant for therapy given at toxic dose
 - Subcutaneous
 - Intravenous
 - Intramuscular
 - Intrathecal (spinal cord)
 - Intravitreal (eye)

4 Mechanisms of Absorption ...

- 1) Diffusion through lipid membrane
- 2) Diffusion through aqueous pores (formed by aquaporins)
- 3) Interact with solute carrier or other membrane transporter
- 4) Pinocytosis: CM invaginates the macromolecules into cytoplasm; not common to gain entry into cells

Routes of Absorption:

- 1. Gastrointestinal Tract
 - Mouth to Rectum
 - Factors affecting rate of absorption :
 - a. pH
 - b. GI motility
 - c. GI Surface Area
 - d. Lipid Solubility
 - Lipid soluble substances more readily absorbed than water soluble as it pass through lipid membrane
 - Barriers:
 - a. Digestive enzymes in saliva, stomach, intestines
 - b. Altered pH acidity in stomach
 - c. Motility of GIT faster = reduced rate
 - d. Interaction with food & other drugs in GI lumen

2. Respiratory Tract

- Lungs
 - ightharpoonup One-cell thin epithelium of alveoli ightharpoonup increased rate of diffusion
 - ightharpoonup Close contact with blood capillaries ightharpoonup increased rate of diffusion
- Toxic Agents
 - → Gas, Vapours, Aerosols, Volatile Liquids

3. Skin

- Impermeable unless there's breakage
- Dermis layer: Blood capillaries
- $\bullet \quad \text{Stratum Corneum} \to \text{outermost, keratinised cells} \ ... \ \text{rate-limiting step for absorption}$
- Passive Diffusion:
 - → Through skin layers
 - → Venous & Lymphatic Capillaries in Dermis
 - → Systemic Circulation