Lecture 1:

Anthropology Introduction

- The study of humans previously the study of 'primitive man' (non-western cultures)
- Human development, what makes humans human, effect of technology
- Study of cultural diversity through fieldwork
- Holistic anthropology biocultural, evolutionary, neuro-psychological
 - o Understanding humanity with a multi-dimensional, cross-cultural and comparative framework
 - Looking at present and past how does evolution affect us today?
- Origin of and functional capacities of the human body
- Human body is shaped by values/obsessions e.g. steroids changed views/stereotypes of the physical appearance (men)
- Sport diversity is badly misunderstood
- 'Plasticity' human body sets as an adult e.g. learning language as a child is easier than learning as an adult Human Coccyx (tailbone)
 - Vestigial structure ancestors had tails
 - o Common/universal, present in adult, organ useful or useless, still has evidence of previous function
 - o Examples: appendix, Goosebumps, toes, hiccups, wisdom teeth
 - Mammalian dive reflex splashing cold water on face = 10-20% decrease in heart rate, vasoconstriction (blood is shut between heart and brain)
 - Non-functioning
 - Atavism reappearance of a lost characteristic (behaviour or physical structure) seen in remote ancestors, not seen in parents/recent ancestors
 - o Rare, present in adult, missing from parents, trait of evolutionary ancestor
 - 'Evolutionary throwback'
 - o Re-emergence of a trait from a distant ancestor
 - Human embryo has a tail up to week 8 then cell death terminate tail, immune system digests tissue
 - Homologous structures structures seen in a variety of species, come form early ancestor e.g. forearm of mammals very similar (structures different, bones similar)
 - o Similar structure due to common descent but different function

Human body

- Body has host of 'kluges' design problems e.g. throat
 - o 'Sub-optimal' solutions to 'design' problems
 - Throat breathing, eating and talking overlaps
 - Testicles descent problem and prostate with urethra through it, men are prone to hernia (intestines pushed out of hole left by descent of testicles)
 - o Eyes nerve is in front of the retina
- Do you 'believe' in evolution?
 - o Evolution is not faith, best explanation for evidence, not finished
 - o Not a progress, chain of being things improving

Lecture 2: Darwin on Natural Selection

Charles Darwin

- Voyage on the Beagle
 - o Travelling by boat and stopping at successive ports for substantial periods of time allowed Darwin the opportunity to observe and analyse changes from location to location
 - o Studied local fauna and flora
 - o Went to Australia 3x, visited Brazil
 - o 5yr journey
 - o Experimentalist
 - o Theorising about Natural Selection used the metaphor of 'coral'
 - Species varied from place to place, islands with isolated species
 - Population ever increasing survival not guaranteed, evidence of extinct animals

- Species change bones of related but distinct earlier forms
- Variation species had deep relations and shared origins
- Context of his ideas
 - o How did the concept of evolution become thinkable?
 - Geographical, population mathematics, zoological, fossil and theoretical knowledge concept of evolution middle of 19th-20th century
 - Principle of Population essay by Thomas Malthus foundation of competition of resources, more animals in population than resources
 - o Darwin's predecessors
 - Linnaeus taxonomy, classified species
 - Buffon theory of degeneration, imperfections in organisms
 - Erasmus Darwin divine creation with speciation
 - Lamarck species change for environment, will to change, inheritance, law of disuse and use, focused on adaptation
 - Lyell and Hutton geological uniformitarianism, earth was very old ('deep time')
 - o William Wells described natural selection in 1818, Patrick Matthew in 1831, Darwin wrote book but held it secret in 1844, Darwin received package from Wallace in 1858
 - o 1858 Wallace and Darwin revealed principle of evolution
 - o 1859 Darwin published Origin of Species
 - o Contemporaries already considering species change, sense of time depth growing due to geology, most theorists believed in degeneration/aspirational change/catastrophism
- On the Origin of Species
 - o Staggering breadth e.g. finches, pigeons lots of evidence, gave an explanation
 - o Wrote many books about animals, plants and humans e.g. earthworms, descent of humans
- Intellectual Legacy
 - Renowned for evolution preferred 'transmutation'
 - o Natural selection not widely accepted 1875, largely neglected by biologists
 - o Reluctant Revolutionary natural selection 'confessing a murder'
 - Worried about religion and social respectability
 - o Changed the shape and tenor of biology
 - o Humans = animals
 - o Species do not have an 'essence' populations with variation and speciation/change over time
 - o 'Fitness' depends on situation
 - o 'Evolution' = not a result of design, striving or effort
 - o Unity of the origins of all species
 - o Dawning recognition that we are linked to all life, unbroken tree of speciation
- Natural Selection
 - o Species have significant inheritable variation
 - o More individuals are born that can survive to reproduce
 - Variation affects reproductive success
 - o Species adapt to ecological niches over time
 - Variation + Inheritance + Selection + Time = Adaptation (VISTA)

Since Darwin

- Darwin's work on evolution was a change-maker for the field of biology
 - o Descent with modification
 - o Natural Selection
 - o Power of evidence
- What was the mechanism of inheritance? Mendel
- Natural Selection as a prime cause of evolution did not become widely accepted until statistics in late 19th century and integration with genetics in the 20th century
- Genetic information is insufficient
- Netherlands (Dutch) Famine cohort study Trans-generational inheritance

- Epigenetics - study of changes in organisms caused by modification of gene expression rather than alteration of the genetic code itself due to environment

Evolutionary System

- Variation interaction between system and environment = random fluctuations
- Selection positive or negative dissipation of innovations introduced by variation
- Memory/Inheritance ability to create correlations between ongoing dynamic patterns and past patterns
- Organisation interplay between variation and selection alters arrangement of constituent elements
- Complexity ability to incorporate and coordinate selective pressures

Genetic Inheritance

- DNA -- (transcription) --> RNA -- (translation) --> Protein
- 1.5% of DNA codes for proteins
- Non-coding DNA is 'regulatory' affecting gene expression
- Other molecules act on DNA info DNA inert by itself

How fast is evolution?

- Mostly slow, at times very fast
- E.g. birds reading traffic lights, spiders making webs near street lights in Vienna

'Punctuated Equilibrium'

- Darwin focussed on gradual change and long periods of similar fossils support this
- Moments in fossil record where pace accelerates
- No inherent reason pace of evolution needs to be consistent if environment was not (and environment includes animals
- E.g. of rapid change = QLD frog-eating snakes, antibiotic resistant bacteria
- Important: 'Selection' always occurring
- Periods of stability due to stabilising selection
- Equilibrium can be punctuated by sudden change due to shift in environment or new niche/competitor/trait
- Fossil record change = gap/missing link due to rarity of remains and consistency during equilibrium

Challenges to Darwin

- How did variation arise?
 - o Gregor Mendel, 1860s began to report research on inheritance of traits
 - Traits didn't blend (dominant/recessive), acquired traits not transmitted
 - Work rediscovered in 20th century
 - Inheritance of traits, offspring received traits from both parents, dominant traits expressed
 - o Phenotype expressed trait
 - o Genotype genetic type
- If offspring are 'blending of inheritance' all variation should disappear through sexual reproduction
- Genetics added to understanding of mechanisms to natural selection

Discovery of DNA

- Watson and Crick drawing on the work of Franklin, first described the double helix structure of DNA in chromosomes
- DNA creates proteins and genes, other parts regulate the production of proteins
 - o Tails, atavisms and homologous organs show how gene regulation can produced variation

Mutations

- DNA sequence can be: deleted, duplicated, inverted or inserted in the wrong place
- Result in some form of damage or neutral outcomes if the DNA is sufficiently buttressed
- Positive mutations are extremely rare
- DNA + mutation + natural selection = evolution
- Errors in transcription might produce unusual variants
- Variants have differential possibility of survival
- Mutated alleles might be eliminated or become dominant genotype
- E.g. mutated colouration in peppered moths

- Remember genetic pool also already contains variation
- Mycobacterium tuberculosis antibiotics = selective pressure, resistance becomes dominant Population Selection
 - Natural species have inherent genetic variation including unexpressed traits
 - Selection acts on phenotype but is affecting genetic variation pool
 - o Evolution is a 'change of allele frequency over time'
 - Variation is always present and constantly generated in populations

'Modern Synthesis'

- Variation is generated genetic mutation
- Inheritance is only through genotype
- Selection is only process of change
- Adaptation is a change in a population's genetic pool

Lecture 3: Primates - Origins and Distinctive Niche

Jane Goodall

- Studied chimpanzees, observed tool use/violence/actions/feeding stations

Evidence for human evolution

- Anatomical vestigial organs
- Genetic similarities in genes
- Biochemical same amino acids/proteins
- Embryological as embryo develops
- Bio-geographical animals clustered in space
- Comparative relations among contemporary species

Cladistics - study of the 'tree of life'

- Adaptive radiation has produced all new species
- Clades based on shared ancestor
- Conserved traits kept from ancestor
- Derived traits newly evolved
- 'Paraphyletic' category error
- Order Primate: Mostly tropical, Arboreal (strong grasping hands/feet, non-slip soles/palms, flexible spine), shift in sensory dominance from smell → sight
- Characteristics of primates:
 - o Grasping foot with divergent big toe (hallux)
 - Nails rather than claws
 - o Grasping hands with opposable thumbs
 - Elongated heel
 - o Dominance of hind limbs in locomotion
 - o Eyes rotated forward and close together (stereoscopic vision)
 - o Increased brain size
 - Long gestation period relative to body weight
 - Foetal growth rate is slow relative to mother's body weight
 - Life history prolonged
 - Loss of one incisor and one premolar from tooth rows
- Why Primates? 3 Hypotheses
 - o Adaptation to arboreal life
 - Adaptation to predation on small prey (eyes and fingers)

